Targeting Different Pathways Using Novel Combination Therapy in Triple Negative Breast Cancer

2020 ◽  
Vol 20 (8) ◽  
pp. 586-602
Author(s):  
Manzoor A. Mir ◽  
Hina Qayoom ◽  
Umar Mehraj ◽  
Safura Nisar ◽  
Basharat Bhat ◽  
...  

Triple negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer accounting for 15-20% of cases and is defined by the lack of hormonal receptors viz., estrogen receptor (ER), progesterone receptor (PR) and expression of human epidermal growth receptor 2 (HER2). Treatment of TNBC is more challenging than other subtypes of breast cancer due to the lack of markers for the molecularly targeted therapies (ER, PR, and HER-2/ Neu), the conventional chemotherapeutic agents are still the mainstay of the therapeutic protocols of its patients. Despite, TNBC being more chemo-responsive than other subtypes, unfortunately, the initial good response to the chemotherapy eventually turns into a refractory drug-resistance. Using a monotherapy for the treatment of cancer, especially high-grade tumors like TNBC, is mostly worthless due to the inherent genetic instability of tumor cells to develop intrinsic and acquired resistance. Thus, a cocktail of two or more drugs with different mechanisms of action is more effective and could successfully control the disease. Furthermore, combination therapy reveals more, or at least the same, effectiveness with lower doses of every single agent and decreases the likelihood of chemoresistance. Herein, we shed light on the novel combinatorial approaches targeting PARP, EGFR, PI3K pathway, AR, and wnt signaling, HDAC, MEK pathway for efficient treatment of high-grade tumors like TNBC and decreasing the onset of resistance.

Author(s):  
Garhima Arora ◽  
Sumana Ghosh ◽  
Samrat Chatterjee

Aim: Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer with high heterogeneity, rapid progression, and paucity of treatment options. The most effective chemotherapeutic drug used to treat TNBC is doxorubicin (Doxo) which is an anthracycline antibiotic. However, Doxo treatment alters cytosolic calcium dynamics leading to drug-resistance condition. The aim of this study is to capture the alterations in the activity of various calcium channels and pumps during Doxo treatment and their consequences on cytosolic calcium dynamics that ultimately result in drug resistance. Methods: In the present study, a mathematical model is proposed to capture the complex dynamical landscape of intracellular calcium during Doxo treatment. This study provides an insight into Doxo remodeling of calcium dynamics and associated drug-resistance effect. The model was first analyzed analytically and then explored through numerical simulation using techniques like global sensitivity analysis, parameter recalibration, etc. Results: The model is used to predict the potential combination therapy for Doxo that can overcome Doxo associated drug resistance. The results show targeting the dysregulated Ca2+ channels and pumps might provide efficient chemotherapy in TNBC. It was also observed that the indispensability of calcium influx rate is paramount in the Doxo drug resistance. Finally, three drugs were identified from existing literature that could be used as a combination therapy along with Doxo. Conclusions: The investigation highlights the importance of integrating the calcium signaling of various calcium regulating compounds for their effective anti-tumor effects deliverance along with chemotherapeutic agents. The results from this study might provide a new direction to the experimental biologists to explore different combination therapies with Doxo to enhance its anti-tumor effect.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1410
Author(s):  
Bora Lim ◽  
Christine B. Peterson ◽  
Alexander Davis ◽  
Elin Cho ◽  
Troy Pearson ◽  
...  

Triple-negative breast cancer (TNBC) is a heterogeneous group of estrogen, progesterone, and HER2-negative breast cancers with poor clinical outcomes. The imipridone ONC201 is a G-protein-coupled dopamine receptor D2 modulator and an allosteric agonist of the mitochondrial protease caseinolytic protease P(ClpP), which induces apoptosis. Here, we aimed to develop a novel ONC201-based combination therapy targeting TNBC. We performed a reverse-phase protein array analysis of ONC201-treated/-untreated and -sensitive/-resistant cell lines to identify potential predictive biomarkers. A principal component analysis using measured protein expression levels, the apoptosis score (AS), and heatmaps of all the measured protein and AS-related protein expression levels did not show a clear correlation between the expression levels of a specific protein and ONC201 efficacy. Three-dimensional RNA interference kinome-wide library screening revealed the MAPK and PI3K/Akt pathways as potential synergistic therapeutic partners. The combination with the MEK inhibitor trametinib successfully inhibited the growth of both ONC201-sensitive/-resistant TNBC cell lines. The baseline ClpP level correlated with the efficacy of single-agent ONC201. Single and combination therapy increased caspase 3/7 activity. The predictive biomarkers and a detailed mechanism of synergy beyond an induction of caspase activation should be tested for translation into future studies.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A342-A342
Author(s):  
Brandie Taylor ◽  
Justin Balko ◽  
Melinda Sanders ◽  
Paula Gonzalez-Ericsson ◽  
Violeta Sanchez

BackgroundDespite the broad success of immune checkpoint inhibition (ICI e.g. anti-Programmed Death Ligand-1 [PD-L1]) in cancer treatment, tumor-intrinsic factors leading to intrinsic and acquired resistance are poorly understood. Tumor specific MHC-I expression is indispensable for anti-PD-1/L1 response as complete loss of MHC-I via B2M deletion results in inability of CD8+ T cells to recognize tumor-associated antigens. However, MHC-I is heterogeneously downregulated or lost in many tumor types. Tumor cell destruction can also occur through non-synaptic mechanisms, in a so-called ‘field effect’. Therefore, we modeled heterogeneous loss of MHC-I expression in breast cancer and experimentally evaluated how heterogeneous MHC-I loss affects response to anti-PD-L1 therapy.MethodsWe performed quantitative immunofluorescence for MHC-I and Pan-CK on breast cancer tumors (n=410). To determine the functional effect of MHC-I heterogeneity on anti-PD-L1 response, we used an immunocompetent EMT6 orthotopic mammary tumor model which ubiquitously expresses MHC-I at baseline. Using CRISPR/Cas9, we engineered EMT6 cells with B2m loci excision resulting in complete knockout of MHC-I on the cell surface. We then orthotopically implanted B2m-comtetent and B2m-KO cells at varying inoculum ratios (100:0, 90:10, 50:50, 10:90, 0:100) into syngeneic Balb/C mice and assessed immune responsiveness and efficacy of checkpoint inhibition. Additionally, to look at how loss of MHC-I affects the tumor microenvironment we will use the PanCancer Immune NanoString panel (n=770 genes) to evaluate gene expression patterns in tumor cells and infiltrating immune cells.ResultsIn patient samples, we identified high diversity in MHC-I expression across all clinical subtypes, with triple negative breast cancer (TNBC) having the highest MHC-I expression. Chemotherapy-treated tumors had higher MHC-I levels than untreated tumors. In mice when 10% of cells were B2m-KO, we observed a 50% reduction in complete eradication of EMT6 tumors with aPD-L1 treatment and reduced disease-stabilization and no complete responses when a 50% mixture of MHC-I deficient cells. An increasing percentage of B2m KO leads to worse outcomes overall and a decrease in infiltrating T cells.ConclusionsOur work suggests that there is an ICI-responsive phenotype that is driven by heterogeneity in MHC-I expression levels. As little as 10% of tumor specific MHC-I loss can lead to therapeutic resistance and a decrease in complete responders. This represents that early TNBC may be less responsive to single-agent PD-L1 due to specific percentages of MHC-I loss. MHC-I expression can influence therapy outcomes and potentially lead to novel observations of how to overcome lack of, or limited, MHC-I expression.


2020 ◽  
Vol 15 (1) ◽  
pp. 501-510
Author(s):  
Bin Ma ◽  
Wenjia Guo ◽  
Meihui Shan ◽  
Nan Zhang ◽  
Binlin Ma ◽  
...  

AbstractThis study is to investigate the effect of the PI3K/Akt signaling pathway on the regulation of BRCA1 subcellular localization in triple-negative breast cancer (TNBC) MDA-MB-231 cells and hormone-sensitive T47D cells. We found that heregulin-activated T47D cells showed more nuclear localization of BRCA1, but BRCA1 nuclear localization decreased after the inhibition of the PI3K signaling pathway. In MDA-MB-231 cells, activation or inhibition of the PI3K signaling pathway did not significantly affect cell apoptosis and BRCA1 nuclear translocation (P > 0.05). However, in T47D cells, the activation of the PI3K pathway significantly increased cell apoptosis (P < 0.05). In the heregulin-activated MDA-MB-231 and T47D cells, the phosphorylation of Akt and BRCA1 was significantly increased (P < 0.05), while that was significantly reduced after PI3K pathway inhibition (P < 0.05). The changing trends of the mRNA levels of Akt and BRCA1 in MDA-MB-231 and T47D cells after PI3K pathway activation or inhibition were consistent with the trends of their proteins. In both MDA-MB-231 and T47D cells, BRCA1 phosphorylation is regulated by the PI3K signaling pathway, but the nuclear localization of BRCA1 is different in these two cell lines. Moreover, the apoptosis rates of these two cell lines are different.


2011 ◽  
Vol 17 (21) ◽  
pp. 6905-6913 ◽  
Author(s):  
Richard S. Finn ◽  
Carmelo Bengala ◽  
Nuhad Ibrahim ◽  
Henri Roché ◽  
Joseph Sparano ◽  
...  

Biomaterials ◽  
2017 ◽  
Vol 113 ◽  
pp. 243-252 ◽  
Author(s):  
Yanping Ding ◽  
Shishuai Su ◽  
Ruirui Zhang ◽  
Leihou Shao ◽  
Yinlong Zhang ◽  
...  

2021 ◽  
Author(s):  
Milos Spasic ◽  
Gregory J. Goreczny ◽  
Qiuchen Guo ◽  
John N. Hutchinson ◽  
Rachel A. Freedman ◽  
...  

2018 ◽  
Vol 25 (6) ◽  
pp. 1838-1850 ◽  
Author(s):  
Pierre Foidart ◽  
Cassandre Yip ◽  
Jean Radermacher ◽  
Silvia Blacher ◽  
Mehdi Lienard ◽  
...  

2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Xiaoqi Zeng ◽  
Shanshan Jiang ◽  
Simin Ruan ◽  
Zhaoze Guo ◽  
Jingyun Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document