Development and Validation of a Quantitative NMR Method for the Determination of the Commercial Tablet Formulation of Sulfasalazine

2018 ◽  
Vol 15 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Feng Su ◽  
Zi-qing Sun ◽  
Xian-rui Liang

Introduction: Quantitative NMR spectroscopy (qNMR) is a rapid, simple and efficient method for the assay of sulfasalazine (SSZ) in commercial tablet formulation. Materials and Methods: The qNMR method was demonstrated using maleic acid as an internal standard and DMSO-d6 as a solvent. The characteristic signals of SSZ at δ 8.36 ppm and maleic acid at δ 6.28 ppm were quantified. The reliability of the quantification method had been implemented successfully in validated experiments including specificity and selectivity, linearity, recovery, precision concentration rang, limit of detection (LOD), limit of quantification (LOQ), stability and robustness. Conclusion: The method was found to be liner (R2 = 0.9991) from 8.62 to 20.14 mg/0.6 mL DMSO-d6 in the drug concentration range. The maximum relative standard deviation (RSD) of recovery and precision were tested to be 0.59% and 0.65%, respectively. The LOD and LOQ were determined to be 0.02, 0.07 mg/mL, respectively. The RSD of stability was 0.05%. The robustness was demonstrated by changing four different parameters with the maximum difference less than 0.9%. In addition, the result of qNMR showed in good agreement with the HPLC and UV methods. Based on the experiments, the developed method was successfully applied to the determination of SSZ in commercial tablet.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Indhu Priya Mabbu ◽  
G. Sumathi ◽  
N. Devanna

Abstract Background The aim of the present method is to develop and validate a specific, sensitive, precise, and accurate liquid chromatography-mass spectrometry (LC-MS) method for the estimation of the phenyl vinyl sulfone in the eletriptan hydrobromide. The effective separation of the phenyl vinyl sulfone was achieved by the Symmetry C18 (50 × 4.6 mm, 3.5 μm) column and a mobile phase composition of 0.1%v/v ammonia buffer to methanol (5:95 v/v), using 0.45 ml/min flow rate and 20 μl of injection volume, with methanol used as diluent. The phenyl vinyl sulfone was monitored on atomic pressure chemical ionization mode mass spectrometer with positive polarity mode. Results The retention time of phenyl vinyl sulfone was found at 2.13 min. The limit of detection (LOD) and limit of quantification (LOQ) were observed at 1.43 ppm and 4.77 ppm concentration respectively; the linear range was found in the concentration ranges from 4.77 to 27.00 ppm with regression coefficient of 0.9990 and accuracy in the range of 97.50–102.10%. The percentage relative standard deviation (% RSD) for six replicates said to be injections were less than 10%. Conclusion The proposed method was validated successfully as per ICH guidelines. Hence, this is employed for the determination of phenyl vinyl sulfone in the eletriptan hydrobromide.


Author(s):  
Ayya Rajendra Prasad ◽  
Jayanthi Vijaya Ratna

 Objective: The objective of this study was developed and validated a novel, specific, precise, and simple ultraviolet (UV)-spectrophotometric method for the estimation of norfloxacin present in taste masked drug-resin complex.Methods: UV-spectrophotometric determination was performed with ELICO SL 1500 UV-visible spectrophotometer using 0.1 N HCl as a medium. The spectrum of the standard solution was run from 200 to 400 nm range for the determination of absorption maximum (λ max). λ max of norfloxacin was found at 278 nm. The absorbance of standard solutions of 1, 2, 3, 4, and 5 μg/ml of drug solution was measured at an absorption maximum at 278 nm against the blank. Then, a graph was plotted by taking concentration on X-axis and absorbance on Y-axis which gave a straight line. Validation parameters such as linearity and range, selectivity and specificity, limit of detection (LOD) and limit of quantification (LOQ), accuracy, precision, and robustness were evaluated as per the International Conference on Harmonization (ICH) guidelines.Results: Linearity for the UV-spectrophotometric method was noted over a concentration range of 1–5 μg/ml with a correlation coefficient of 0.9995. The LOD and LOQ for norfloxacin were found at 0.39 μg/ml and 1.19 μg/ml, respectively. Accuracy was in between 99.00% and 99.17%. % relative standard deviation for repeatability, intraday precision, and interday precision was found to be 0.600, in between 0.291 and 0.410, and in between 0.682 and 1.439, respectively. The proposed UV spectrophotometric method is found to be robust.Conclusion: The proposed UV-spectrophotometric method was validated according to the ICH guidelines, and results and statistical parameters demonstrated that the developed method is sensitive, precise, reliable, and simple for the estimation of norfloxacin present in taste masked drug-resin complex.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Nidhal M. Sher Mohammed ◽  
T. H. Flowers ◽  
H. J. Duncan

Chlorpropham (CIPC) is the main sprout inhibitor used by potato industry. There is concern about the residues of CIPC and its degradation product 3-chloroaniline, 3-CA; hence, analytical methods are required to analyse their residues in potato samples. An HPLC-UV method was developed and validated for the separation and quantification of these compounds using propham (IPC) as an internal standard. The chromatographic conditions required to achieve good separation were 60% mobile phase of methanol, 15-minute run time at a flow rate of 1.5 mL/min, and a detection wavelength of 210 nm using Phenomenex (ODS-2 250 mm × 4.60 mm 5 µm Sphereclone) column at an ambient temperature. The method was validated for precision, linearity, the limit of detection (LOD) and the limit of quantification (LOQ), producing high precision through RSD ≤ 0.03%, and acceptable criteria of the coefficient of determination (R2) of the calibration curves (0.990). LOD values of CIPC and 3-CA were approximately 0.01 µg/mL whereas the LOQ values were approximately 0.04 µg/mL using repeated injection approach. The proposed HPLC method was compared with the standard GC method of the CIPC residues extracted showing good agreement R2=0.99. Despite using the same extract, the recovery results for the proposed HPLC method were 13% higher than GC analysis.


2019 ◽  
Vol 11 (12) ◽  
pp. 1273-1278
Author(s):  
Md Ali Mujtaba

A simple, specific, economic, accurate, and reproducible UV-spectrophotometric methods were developed and validated for the estimation of berberine (BRC) in bulk and pharmaceutical formulation. The λmax of BRC in 0.1 N hydrochloric acid (pH 1.2), phosphate buffer (pH 6.8), and water was found to be 346 nm, 343 nm and 260 nm respectively. Beer's law was obeyed in the concentration range of 5–30 μg/ml (R2 = 0.9698) in water, 5–25 μg/ml (R2 = 0.9991) in 0.1 N HCl buffer (pH 1.2) and 5–35 μg/ml (R2 = 0.9935) in phosphate buffer (pH 6.8). These methods were tested, and validated for various parameters such as linearity, precision, accuracy, specificity, limit of detection (LOD), and limit of quantification (LOQ) according to ICH guidelines. The method showed good reproducibility and recovery with percent relative standard deviation less than 2%. Moreover, the accuracy and precision obtained implied that UV spectroscopy can be a cheap, reliable, and less time consuming alternative for chromatographic analysis. The proposed methods were successfully applied for the determination of BRC in pharmaceutical formulation. The BRC estimated from the formulation was found to be well within limits (±5% of the labelled content of the formulations). The proposed methods are highly sensitive, precise, accurate, and can be employed for the routine analysis of berberine in bulks as well as in the commercial formulations.


2020 ◽  
Vol 32 (4) ◽  
pp. 238-241 ◽  
Author(s):  
Dandan Wang ◽  
Shengde Wu

This paper describes a rapid method to simultaneously determine acetochlor, fluorochloridone and pendimethalin present in a herbicide emulsifiable concentrate (EC) formulation using gas chromatography–mass spectrometry (GC–MS). Selected ion monitoring mode was performed to increase the sensitivity, with dibutyl phthalate as an internal standard. The method was validated with respect to linearity, accuracy, precision, and stability. Chromatographic separation was carried out on a TG-5 MS column (30 m × 0.25 mm × 0.25 μm) with helium as the carrier gas at a flow rate of 1.0 mL/min. Calibration curves were linear over 2.0–20.0 μg/mL for each analyte, and the limit of quantification was below 20 ng/mL. Good performance in terms of recovery ranging from 94.5% to 102.5% at 3 concentration levels proved excellent accuracy. The intra- and inter-day relative standard deviations for 6 replicate measurements were always less than 5%. The developed method is simple and efficient for the routine determination of the ternary mixtures in a compound herbicide EC formulation product.


Author(s):  
SANATHOIBA SINGHA S ◽  
SREENIVAS RAO T

Objective: This work makes an attempt to establish a sensitive and accurate method for the development and validation of an analytical method for estimation of ulipristal acetate (UPA) in bulk and pharmaceutical dosage form. Methods: A mixture of 20 mM acetate buffer pH 3.7 and methanol in the ratio of 70:30 (v/v %) was used as the mobile phase. An xBridge™ C18 column (250 mm × 4.6 mm, 5μ) was used for the analysis at a flow rate of 1 ml/min, injection volume of 20 μl, run time of 15 min, and detection wavelength of 309 nm. The repeatability (within-day in triplicates) and intermediate precision (for 2 days) were carried out by six injections and the obtained results within and between the days of trials were expressed as percent relative standard deviation (% RSD). The linearity of the method was determined by the analysis of analyte concentration across a range of 10 μg/ml–60 μg/ml. Results: The % RSD values of precision studies were found to be below the accepted limit of 2%. The method was found to be linear with a correlation coefficient (R2) of 0.98. The method was also found to be accurate and robust with suitable values. Limit of detection (LOD) and limit of quantification (LOQ) of the method were found to be 0.371 μg/ml and 1.23 μg/ml, respectively. Conclusion: The results of analysis prove that this method can be used for the routine determination of UPA in bulk drug and in pharmaceutical dosage forms.


Author(s):  
Astri Budikayanti ◽  
Chiswyta Chaliana ◽  
Melva Louisa ◽  
Rianto Setiabudy

Objective: To develop and validate high-performance liquid chromatography with photodiode array (HPLC-PDA) detector as a method for measuring carbamazepine plasma concentrations in epilepsy patients treated with monotherapy or polytherapy.Methods: Carbamazepine was extracted from epilepsy patients’ plasma through liquid-liquid extraction, using protein precipitation with chloroform. Analysis was performed using HPLC with Inertsil DS-4 C18 (4.6x150 mm), 5 μm particle size column. The optimal condition for separation was established in a mobile phase consisting of acetonitrile: water (50:50) at a flow rate of 1.0 ml/min, detected by PDA detector at 220 nm. Propylparaben was used as the internal standard. The retention time was 3.5 min.Results: Linearity was obtained over a concentration range of 0.5-16 μg/ml with r = 0.999. The method showed good intra-and inter-day precision and accuracy of more than 90% difference (% diff) and 95% relative standard deviation (RSD). Lower limit of quantification (LOQ) was 0.5 μg/ml and lower limit of detection (LOD) was 0.2 μg/ml with 100% accuracy and more than 90% precision. Recovery test was nearly 100%. Stability of carbamazepine plasma concentration in 3 epilepsy patients was measured on the first and third month of treatment, ranging between 83.5 to 98.7%. When used to compare carbamazepine as a monotherapy versus polytherapy, the method showed good selectivity.Conclusion: The present HPLC method was valid for measuring carbamazepine plasma concentrations in epilepsy patients treated with monotherapy or polytherapy. This method meets the standard in the EMEA guideline in terms of linearity, precision, and accuracy, also selectivity in epilepsy patients treated with polytherapy.


2020 ◽  
Vol 16 (4) ◽  
pp. 428-435
Author(s):  
Ahmed F.A. Youssef ◽  
Yousry M. Issa ◽  
Kareem M. Nabil

Background: Simeprevir is one of the recently discovered drugs for treating hepatitis C which is one of the major diseases across the globe. Objective: The present study involves the development of a new and unique High-Performance Liquid Chromatography (HPLC) method using fluorescence detection for the determination of simeprevir (SIM) in human plasma. Methods: Two methods of extractions were tested, protein precipitation using acetonitrile and liquidliquid extraction. A 25 mM dipotassium hydrogen orthophosphate (pH 7.0)/ACN (50/50; v/v), was used as mobile phase and C18 reversed phase column as the stationary phase. The chromatographic conditions were optimized and the concentration of simeprevir was determined by using the fluorescence detector. Cyclobenzaprine was used as an internal standard. Results: Recovery of the assay method based on protein precipitation was up to 100%. Intra-day and inter-day accuracies range from 92.30 to 107.80%, with Relative Standard Deviation (RSD) range 1.65-8.02%. The present method was successfully applied to a pharmacokinetic study where SIM was administered as a single dose of 150 mg SIM/capsule (Olysio®) to healthy individuals. Conclusion: This method exhibits high sensitivity with a low limit of quantification 10 ng mL-1, good selectivity using fluorescence detection, wide linear application range 10-3000 ng mL-1, good recovery and highly precise and validation results. The developed method can be applied in routine analysis for real samples.


2010 ◽  
Vol 7 (3) ◽  
pp. 807-812 ◽  
Author(s):  
Vanita Somasekhar ◽  
D. Gowri Sankar

A reverse phase HPLC method is described for the determination of esmolol hydrochloride in bulk and injections. Chromatography was carried on a C18column using a mixture of acetonitrile, 0.05 M sodium acetate buffer and glacial acetic acid (35:65:3 v/v/v) as the mobile phase at a flow rate of 1 mL/min with detection at 275 nm. The retention time of the drug was 4.76 min. The detector response was linear in the concentration of 1-50 μg/mL. The limit of detection and limit of quantification was 0.614 and 1.86 μg/mL respectively. The method was validated by determining its sensitivity, linearity, accuracy and precision. The proposed method is simple, economical, fast, accurate and precise and hence can be applied for routine quality control of esmolol hydrochloride in bulk and injections.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1837
Author(s):  
Harischandra Naik Rathod ◽  
Bheemanna Mallappa ◽  
Pallavi Malenahalli Sidramappa ◽  
Chandra Sekhara Reddy Vennapusa ◽  
Pavankumar Kamin ◽  
...  

A quick, sensitive, and reproducible analytical method for the determination of 77 multiclass pesticides and their metabolites in Capsicum and tomato by gas and liquid chromatography tandem mass spectrometry was standardized and validated. The limit of detection of 0.19 to 10.91 and limit of quantification of 0.63 to 36.34 µg·kg−1 for Capsicum and 0.10 to 9.55 µg·kg−1 (LOD) and 0.35 to 33.43 µg·kg−1 (LOQ) for tomato. The method involves extraction of sample with acetonitrile, purification by dispersive solid phase extraction using primary secondary amine and graphitized carbon black. The recoveries of all pesticides were in the range of 75 to 110% with a relative standard deviation of less than 20%. Similarly, the method precision was evaluated interms of repeatability (RSDr) and reproducibility (RSDwR) by spiking of mixed pesticides standards at 100 µg·kg−1 recorded anRSD of less than 20%. The matrix effect was acceptable and no significant variation was observed in both the matrices except for few pesticides. The estimated measurement uncertainty found acceptable for all the pesticides. This method found suitable for analysis of vegetable samples drawn from market and farm gates.


Sign in / Sign up

Export Citation Format

Share Document