Azithromycin nanosuspension preparation using evaporative precipitation into aqueous solution (EPAS) method and its comparative dissolution study

2020 ◽  
Vol 17 ◽  
Author(s):  
Mohammad Hossain Shariare ◽  
Tonmoy Kumar Mondal ◽  
Hani Alothaid ◽  
Md. Didaruzzaman Sohel ◽  
MD Wadud ◽  
...  

Aim: EPAS (evaporative precipitation into aqueous solution) was used in the current studies to prepare azithromycin nanosuspensions and investigate the physicochemical characteristics for the nanosuspension batches with the aim of enhancing the dissolution rate of the nanopreparation to improve bioavailability. Methods: EPAS method used in this study for preparing azithromycin nanosuspension was achieved through developing an in-house instrumentation method. Particle size distribution was measured using Zetasizer Nano S without sample dilution. Dissolved azithromycin nanosuspensions were also compared with raw azithromycin powder and commercially available products. Total drug content of nanosuspension batches were measured using an Ultra-Performance Liquid Chromatography (UPLC) system with Photodiode Array (PDA) detector while residual solvent was measured using gas chromatography (GC). Results: The average particle size of azithromycin nanosuspension was 447.2 nm and total drug content was measured to be 97.81% upon recovery. Dissolution study data showed significant increase in dissolution rate for nanosuspension batch when compared to raw azithromycin and commercial version (microsuspension). The residual solvent found for azithromycin nanosuspension is 0.000098023 mg/ mL or 98.023 ppb. Conclusion: EPAS was successfully used to prepare azithromycin nanoparticles that exhibited significantly enhanced dissolution rate. Further studies are required to scale up the process and determine long term stability of the nanoparticles.

Author(s):  
Shital V. Sonawane ◽  
Avish D. Maru ◽  
Mitesh P. Sonawane

Oral nanosuspension of ritonavir was prepared by antisolvent precipitation method using various polymers such as Eudragit RS100, Poloxamer 407, SLS and Methanol.The effect of eudragit RS100 and poloxamer 407 used stabilizer and SLS is surfactant was investigated on particle size and distribution, drug content, entrapment efficiency was observed. Ritonavir is having low solubility and low permeability drug belonging to class-IV according to BCS. Drug-excipient compatibility and amorphous nature of ritonavir drug is prepared nanosuspension was confirmed by FTIR, DSC and Motic microscope studies, respectively. The nanosuspension was further evaluated for drug content, saturation solubility study and entrapment efficiency. The average particle size of ritonavir nanaosuspensions formulas was observed from 0.006 µm to 0.017 µm. The studied in the solubility and dissolution rate there are the increase solubility and dissolution rate of ritonavir nanosuspension.


2018 ◽  
Vol 238 ◽  
pp. 02002
Author(s):  
Fangjing Sun ◽  
Yi Zhang ◽  
Jiawei Zhang ◽  
Xixi Yan ◽  
Xiaoyu Liu ◽  
...  

In this experiment, ultrafine iron phosphate micro-powder was prepared by hydrothermal method which used phosphate slag as an iron source. The effects of reaction temperature, surfactants type and amount on its particle size were explored. The samples were characterized by using Malvern Laser Particle Size Analyzer (MS2000), X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX).The results showed that at 160 °C, 1 wt%CTAB, monoclinic iron phosphate micro-powder was obtained with an average particle size about 0.4 μm which also has a good dispersion in aqueous solution.


1992 ◽  
Vol 9 (1) ◽  
pp. 17-29 ◽  
Author(s):  
M. Saleem ◽  
M. Afzal ◽  
F. Mahmood ◽  
A. Ali

The porous nature of alumina has been investigated using various techniques. The values obtained for moisture content, surface area, pore volume, average particle size and porosity were 22%, 116 m2/g, 0.76 cm3/g, 17.0±0.5 μm and 68.0%, respectively. The adsorption isotherms of NdIII, PrIII and ErIII on alumina from aqueous solution have been obtained at different temperatures. All these adsorption isotherms obey the Langmuir, Freundlich and Dubinin-Radushkevich isotherm equations. Thermodynamic parameters such as the free energy, entropy and enthalpy of adsorption have been computed and interpreted. It is noteworthy that the adsorption of PrIII and NdIII increases with decreasing temperature while the reverse is observed for ErIII.


2011 ◽  
Vol 221 ◽  
pp. 72-77 ◽  
Author(s):  
Xin Jin ◽  
Shuan Qing Hou ◽  
Xiao Xu Sha ◽  
Liang Yu

Native corn starches were acid-treated at 53 °C for hours in HCl aqueous solution. The peak temperature (Tp) and heat of gelatinization (ΔHgel) before and after treatments were determined. The average particle size, TG and viscosity were measured. The results showed that the viscosity of corn starch decreased from 630mPa to 4.6mPa after acid treatment for 6h. The average particle size decreased and ΔHgel decreased obviously after acid modification.


Author(s):  
Amruta Papdiwal ◽  
Kishor Sagar ◽  
Vishal Pande

Poor water solubility and slow dissolution rate are major issues for the majority of upcoming and existing biologically active pharmaceutical compounds. Nateglinide is Biopharmaceutical Classification System Class-II drug that has low solubility and high permeability. The purpose of the present study was to improve the solubility and dissolution rate of Nateglinide by the preparation of nanosuspension by the nanoprecipitation technique. Nateglinide nanosuspension was evaluated for its particle size, in vitro dissolution study, and characterized by differential scanning calorimetry and scanning electron microscopy. The optimized formulation showed an average particle size of 207 nm and zeta potential of -25.8 mV. The rate of dissolution of the optimized nanosuspension was enhanced by 83% in 50 min relative to micronized suspension of nateglinide (37% in 50 min). This improvement was mainly due to the formulation of nanosized particles of Nateglinide. Stability study revealed that nanosuspension was more stable at room temperature and refrigerator condition with no significant change in particle size distribution. These results indicate that the nateglinide loaded nanosuspension may significantly improve in vitro dissolution rate and thereby possibly enhance the onset of therapeutic effect.


2020 ◽  
Vol 20 (11) ◽  
pp. 6723-6731
Author(s):  
Mi Choi ◽  
Cheong-Soo Hwang

Colloidal ZnS:Mn nanocrystals (NCs) were synthesized in water by capping the NC surface with conventional amino acids: L-cysteine (Cys) and L-serine (Ser) molecules, which have very similar structures but different terminal functional groups. The optical properties were investigated by using UV-Visible and photoluminescence (PL) spectroscopy. The PL spectra for both ZnS:Mn-Cys and ZnS:Mn-Ser NCs showed broad emission peaks at 590 nm. The measured average particle size from the high-resolution transmission electron microscopy (HR-TEM) images were 4.38 nm (ZnS:Mn-Cys) and 5.57 nm (ZnS:Mn-Ser), which were also supported by Debye-Scherrer calculations. In addition, the surface charge of the NCs in aqueous solutions were measured using zeta-particle size analyzer spectroscopy, which showed formation of negatively charged surface for the ZnS:Mn-Cys (−43.93 mV) and ZnS:Mn-Ser (−8.21 mV) NCs in water. In this present study those negatively charged NCs were applied as photosensors for the detection of specific divalent transition metal cations in aqueous solution at the same condition. Consequently, the ZnS:Mn-Cys and ZnS:Mn-Ser NCs showed totally different photosensor activities upon the addition of first-row divalent transition metal ions. The former NCs showed luminescence quenching for most added metal ions except for Zn (II) ions; whereas the latter NCs showed exclusive quenching effect for Cu (II) ions at the same conditions. These results suggested that those NCs can be applied as Zn2+ and Cu2+ ion sensors in water.


Author(s):  
Mohini E. Shinde ◽  
Mitesh P. Sonawane ◽  
Avish D. Maru

Solubility is an essential factor for drug effectiveness. Simvastatin is poorly water-soluble drug and its bioavailability is very low. Nanosuspension is one of those approach which can tremendously enhance the effective surface area of drug particles by reducing the particle size and there by increases the rate of dissolution and hence improve bioavailability. The main purpose of the present investigation was to increase the saturation solubility of simvastatin by preparation of nanosuspension. Nanosuspension of simvastatin were prepared by nanoprecipitation method using hydroxypropyl cellulose as stabilizer and sodium lauryl sulphate as surfactant. Prepared nanosuspension was evaluated for its particle size, total drug content, entrapment efficiency and saturation solubility study. On the basis of the evaluation, the best batch F8 formulation demonstrated highest drug content and entrapment efficiency with average particle size of 0.004µm. The saturation solubility studies show the solubility of the prepared nanosuspension has increased as compared to the pure drug due to the particle size reduction. The nanosuspension of simvastatin could be successfully prepared and can be concluded that the nanosuspension formulation is a promising approach to enhance the solubility. The nanoprecipitation is a simple and effective method to produce nano sized particles of poorly water-soluble drugs with enhance solubility.


Author(s):  
Pankaj P Nerker ◽  
Hitendra Mahajan ◽  
Sagar Deore ◽  
Pradyumn Ige

Nanosuspensions provide convenient formulations for improving the bioavailability and drug delivery. The objective of the investigation was to develop stable nanosuspension formulation of ramipril, with minimum surfactant concentration that could improve its solubility, stability and oral bioavailability. Ramipril is a potent antihypertensive drug, which act by inhibiting the angiotensin-converting enzyme. Nanosuspension was developed by antisolvent precipitation followed by high-pressure homogenization using hydrophilic polymers such as HPMC E5, HPMC E15, PVP K30, PVP K25, and PVA. The resulting nanosuspension was transformed into dry powder by freeze-drying process. Among all five formulations a formulation was choosen on the basis of results obtained from comparative study between different polymers based nanosuspension formulation of ramipril. The nanosuspension prepared was then evaluated for particle size, polydispesivity index, zeta potential, entrapment efficiency, saturated solubility study, scanning electron microscopy, differential scanning colorometry, and X ray diffraction. The combination of soya lecithin and pluronic F-68 as stabilizers yield nanosuspension with the smallest average particle size. The formulation of ramipril based on HPMC E 15 (Formulation B) shown enhanced dissolution rate. In which more than 60% of the drug was dissolved in the first 20 min compared to less than 25% of the pure drug within the same time period. The increase in the in vitro dissolution rate, nano size may favourably affect bioavailability.


Author(s):  
Rupali L. Shid ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L. Shid

Poor water solubility and slow dissolution rate are issues drug content and polydispersity index. The obtained for the majority of upcoming and existing biologically results showed that particle size (nm) and rate of active compounds. Simvastatin is poorly water-soluble  dissolution has been improved when nanosuspension drug and its bioavailability is very low from its crystalline prepared with the higher concentration of PVPK-30 and form. The purpose of the present investigation was to Poloxamer-188 and lower concentration of SLS. The increase the solubility and dissolution rate of simvastatin by particle size and zeta potential of optimized formulation the preparation of nanosuspension by Emulsification was found to be 258.3 nm and 23.43. The rate of Solvent Diffusion Method at laboratory scale. Prepared dissolution of the optimized nanosuspension was nanosuspension was evaluated for its particle size and enhanced (90.02% in 60min), relative to plain simvastatin in vitro dissolution study and characterized by zeta (21% in 60 min), mainly due to the formation of nanosized potential, differential scanning calorimetry (DSC) and particles. These results indicate the suitability of 23 factorial X-Ray diffractometry (XRD), Motic digital microscopy, design for preparation of simvastatin loaded nanosus- entrapment efficiency, total drug content, saturated pension significantly improved in vitro dissolution rate, solubility study and in vivo study. A 23 factorial design was and thus possibly enhance fast onset of therapeutic drug employed to study the effect of independent variables, effect. In vivo study shows increase in bioavailability in amount of SLS (X1), amount of PVPK-30 (X2) and nanosuspension formulation than the plain simvastatin Poloxamer-188 (X3) and dependent variables are Total drug. 


2015 ◽  
Vol 11 (5) ◽  
pp. 609-617 ◽  
Author(s):  
Fatemeh Zabihi ◽  
Na Xin ◽  
Jingfu Jia ◽  
Tao Cheng ◽  
Yaping Zhao

Abstract Curcumin is the main gradient of “Turmeric” a famous Indian spice and food additive. The marvelous nutritional and medicinal effects of curcumin made it a good alternative to some conventional drugs and food flavoring or coloring materials. However, the low solubility of curcumin is a challenging hindrance which should be seriously addressed. In this work, we prepared nano-curcumin with enhanced aqueous dispersion and dissolution rate. Ultrasonic-assisted supercritical anti-solvent (UA-SAS) technique was used to convert the commercial curcumin to uniform distributed nano-particles with the average size of 20 nm and yielding of 65%. The effect of process parameters including pressure, temperature, solution flow rate, and nature of organic solvent on the average particle size and yielding of products was investigated. The morphology, size, and crystalline pattern of processed curcumin particles were characterized by scanning electron microscopy, mean particle size analyzer, and X-ray diffraction. The champion specimen was achieved when the supercritical fluid was employed at 16 MPa and 35°C. Aqueous suspension of processed nano-curcumin can be stable for more than 2 months. In vitro dissolution experiments showed a remarkable enhancement in dissolution rate of UA-SAS-treated curcumin respecting to the commercial curcumin powder.


Sign in / Sign up

Export Citation Format

Share Document