Verbascoside Attenuates Rac-1 and HIF-1α Signaling Cascade in Colorectal Cancer Cells

2019 ◽  
Vol 18 (15) ◽  
pp. 2149-2155
Author(s):  
Danial Seyfi ◽  
Seyed B. Behzad ◽  
Mohammad Nabiuni ◽  
Kazem Parivar ◽  
Mohammad Tahmaseb ◽  
...  

Objective: Metastasis phenotype is considered as the main challenge in colon cancer therapeutic methods. Furthermore, the side effects of conventional colorectal cancer treatment methods have attracted a lot of attention into natural ingredients. The aim of the study was to assess the molecular mechanism of verbascoside as natural bio-compound in human HT29 colon cancer cells. Methods: HT29 cells were cultured in RPMI-1640 medium containing 10% FBS and 1% penicillin/ streptomycin at 37°C and 5% CO2. HT-29 cells were treated with different concentrations of verbascoside (10, 20, 30, 40, 50, 70, 100 µg/ml) for 24 hours, then MTT assay was used to calculate 50% inhibitory concentration. The migration of the colon cancer cells was evaluated by scratch assay. To evaluate involved antiproliferative mechanism, Rac-1 (Ras-related C3 botulinum toxin substrate 1) and HIF-1α (hypoxia-inducible factor-1α) related gene expression were evaluated by Real Time PCR. Results: The results showed that verbascoside inhibited HT29 colon cancer cell proliferation dose-dependently and IC50 was evaluated as 50 μg/ml (***P<0.001). The results of wound healing assay demonstrated verbascoside decreased cell migration in a dose dependent manner. In the IC50 treated HT29 cells metastatic progression was significantly suppressed as **P<0.01. The results of Real Time PCR showed an attenuating effect of verbascoside on Rac-1, Zeb-1 (zinc finger E-box binding homeobox 1), Arp2 (Actin-Related Proteins), Pak1 (p21 (RAC1) activated kinase 1), VEGF (Vascular endothelial growth factor) and HIF-1α as Epithelial-Mesenchymal Transition markers. The down regulation of mRNA levels was Rac-1= 15.38, HIF-1 α = 16.66, Pak-1, Arp-2= 6.25, VEGF=24.39, Zeb-1=35.71 in HT29 cells treated with IC50 concentration of verbascoside. Conclusion: Colorectal cancer cells induce Rac-1 and HIF-1α overexpression which plays an important role in the activation and progression of cell motility, angiogenesis and metastasis. Overall results showed that verbascoside elucidated significant anti-metastatic and anti-invasion activities through suppression of Rac-1, HIF-1α, and Zeb-1 signaling pathway and it may be a suitable candidate to overwhelm colon cancer metastatic phenotype.

2021 ◽  
Vol 22 (15) ◽  
pp. 8117
Author(s):  
Nunzia D’Onofrio ◽  
Elisa Martino ◽  
Luigi Mele ◽  
Antonino Colloca ◽  
Martina Maione ◽  
...  

Understanding the mechanisms of colorectal cancer progression is crucial in the setting of strategies for its prevention. δ-Valerobetaine (δVB) is an emerging dietary metabolite showing cytotoxic activity in colon cancer cells via autophagy and apoptosis. Here, we aimed to deepen current knowledge on the mechanism of δVB-induced colon cancer cell death by investigating the apoptotic cascade in colorectal adenocarcinoma SW480 and SW620 cells and evaluating the molecular players of mitochondrial dysfunction. Results indicated that δVB reduced cell viability in a time-dependent manner, reaching IC50 after 72 h of incubation with δVB 1.5 mM, and caused a G2/M cell cycle arrest with upregulation of cyclin A and cyclin B protein levels. The increased apoptotic cell rate occurred via caspase-3 activation with a concomitant loss in mitochondrial membrane potential and SIRT3 downregulation. Functional studies indicated that δVB activated mitochondrial apoptosis through PINK1/Parkin pathways, as upregulation of PINK1, Parkin, and LC3B protein levels was observed (p < 0.0001). Together, these findings support a critical role of PINK1/Parkin-mediated mitophagy in mitochondrial dysfunction and apoptosis induced by δVB in SW480 and SW620 colon cancer cells.


2016 ◽  
Vol 291 (33) ◽  
pp. 17405-17416 ◽  
Author(s):  
Yang Zhang ◽  
Yi Zhang ◽  
Liying Geng ◽  
Haowei Yi ◽  
Wei Huo ◽  
...  

Drug resistance is one of the main causes of colon cancer recurrence. However, our understanding of the underlying mechanisms and availability of therapeutic options remains limited. Here we show that expression of pyruvate dehydrogenase kinase 4 (PDK4) is positively correlated with drug resistance of colon cancer cells and induced by 5-fluorouracil (5-FU) treatment in drug-resistant but not drug-sensitive cells. Knockdown of PDK4 expression sensitizes colon cancer cells to 5-FU or oxaliplatin-induced apoptosis in vitro and increases the effectiveness of 5-FU in the inhibition of tumor growth in a mouse xenograft model in vivo. In addition, we demonstrate for the first time that TGFβ mediates drug resistance by regulating PDK4 expression and that 5-FU induces PDK4 expression in a TGFβ signaling-dependent manner. Mechanistically, knockdown or inhibition of PDK4 significantly increases the inhibitory effect of 5-FU on expression of the anti-apoptotic factors Bcl-2 and survivin. Importantly, studies of patient samples indicate that expression of PDK4 and phosphorylation of Smad2, an indicator of TGFβ pathway activation, show a strong correlation and that both positively associate with chemoresistance in colorectal cancer. These findings indicate that the TGFβ/PDK4 signaling axis plays an important role in the response of colorectal cancer to chemotherapy. A major implication of our studies is that inhibition of PDK4 may have considerable therapeutic potential to overcome drug resistance in colorectal cancer patients, which warrants the development of PDK4-specific inhibitors.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Kyeong-Ah Jung ◽  
Mi-Kyoung Kwak

Nuclear factor erythroid 2-related factor 2 (NRF2) is the transcription factor that regulates an array of antioxidant/detoxifying genes for cellular defense. The conformational changes of Kelch-like ECH-associated protein 1 (KEAP1), a cytosolic repressor protein of NRF2, by various stimuli result in NRF2 liberation and accumulation in the nucleus. In the present study, we aimed to investigate the effect ofKEAP1knockdown on NRF2 target gene expression and its toxicological implication using human colon cancer cells. The stableKEAP1-knockdown HT29 cells exhibit elevated levels of NRF2 and its target gene expressions. In particular, the mRNA levels of aldo-keto reductases (AKR1C1, 1C2, 1C3, 1B1, and 1B10) were substantially increased inKEAP1silenced HT29 cells. These differential AKRs expressions appear to contribute to protection against oxidative stress. TheKEAP1-knockdown cells were relatively more resistant to hydrogen peroxide (H2O2) and 4-hydroxynonenal (4HNE) compared to the control cells. Accordantly, we observed accumulation of 4HNE protein adducts in H2O2- or 4HNE-treated control cells, whereasKEAP1-knockdown cells did not increase adduct formation. The treatment ofKEAP1-silenced cells with AKR1C inhibitor flufenamic acid increased 4HNE-induced cellular toxicity and protein adduct formation. Taken together, these results indicate that AKRs, which are NRF2-dependent highly inducible gene clusters, play a role in NRF2-mediated cytoprotection against lipid peroxide toxicity.


2021 ◽  
Author(s):  
Amin Sarkhosh ◽  
Rahim Ahmadi ◽  
Seyyed Hossein Khatami ◽  
Hadi Ghasemi

Abstract Cortisol and testosterone can inhibit the proliferation of colorectal cancer cells. Cortisol may augment the anti-cancer activity of testosterone in colorectal cancer cells. This research aimed to assess the impact of cortisol and testosterone on the viability of colon cancer cells (HTCs). The cytotoxic effects of cortisol and testosterone were evaluated using the MTT assay. Bax and Bcl-2 expression levels were determined using real-time PCR. The colorimetric method was used to assess the activity of caspase-8 and -9 enzymes. The expression levels of Bax and Bcl-2 genes significantly increased (p<0.001), as well as the activity levels of caspase-8 and -9, were elevated (p<0.001). Testosterone may exert cytotoxic activity in colon cancer cells in the presence of cortisol, and cortisol and testosterone cotreatment may contribute to the elevated Bax and Bcl-2 genes expression and caspase 8 and 9 activity enhancement in colorectal cancer cells.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e15118-e15118
Author(s):  
S. Lin ◽  
E. Chiang ◽  
Y. Tsai ◽  
S. Lee ◽  
B. Kuo ◽  
...  

e15118 Background: While clinical benefit against colorectal cancer has been observed with therapeutic monoclonal antibodies such as bevacizumab, cetuximab and panituzumab, the death rate of advanced colorectal cancer remains high that warrants further development of more potent therapeutics. Methods: A cell-based immunization approach was used to generate monoclonal antibodies against targets expressed on human colorectal cancer cells. A chimeric monoclonal antibody, AbGn-7, was selected and evaluated for the potential clinical use to treat colorectal cancer. Results: Expression of AbGn-7 antigen: Carbohydrate competition assay demonstrated that AbGn-7 recognizes a Lewis-A-like carbohydrate antigen (AbGn-7 antigen). Immunohistochemical studies showed that AbGn-7 antigen is expressed in colorectal cancer tissue. No significant binding could be detected in non-tumor tissues except in the epithelia of GI track. Effector function of AbGn-7: AbGn-7 triggered dose-dependent apoptosis in COLO 205 colon cancer cell. In addition, AbGn-7 elicited potent complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) in a dose-dependent manner. Molecular mechanism of apoptosis induced by AbGn-7: Tunel assay, PARP cleavage assay as well as caspase inhibitor studies demonstrated that AbGn-7 induced apoptosis in COLO 205 colon cancer cells via a caspase-independent pathway. Xenograft study: AbGn-7 alone, or in combination with 5FU-Leucovorin, effectively inhibited the growth of COLO 205 xenograft in SCID mice and prolonged their survival. Conclusions: The results of the present study suggest that AbGn-7 is a potential candidate for effective treatment of colorectal cancer. [Table: see text]


2021 ◽  
Vol 11 (1) ◽  
pp. 22-27
Author(s):  
Xiaoning Qin ◽  
Hongxun Ruan ◽  
Yinghao Hao ◽  
Weiqi Kong ◽  
Jing Zhao ◽  
...  

Background: To study the relationship between interleukin-22 receptor1 (IL-22R1) and the proliferation and apoptosis of colon cancer cells. Methods: SW480, SW620 (Human Colorectal Cancer Cell Lines) that express positive to IL-22R1 were exposed in the environment of IL-22. The proliferation trial included 5 groups: IL-22, 5-FU, 5-FU + IL-22, medium and control. The apoptosis trial included 4 groups: IL-22, 5-FU, 5-FU + IL-22 and control. The result of apoptosis was detected by Apoptosis Kit (AnnxinVPE and 7-AAD), and proliferation was detected by Ki67 antibody (Cell proliferation-associated nuclear antigens). The rates of proliferation and apoptosis were detected by flow cytometry. Changes of the rate of proliferation and apoptosis before and after silencing were compared and analyzed statistically after silencing the gene of IL-22R1. Result: The combination of IL-22R1 and IL-22 could significantly inhibit the apoptosis of colon cancer cells and promote the proliferation of colon cancer cells (P < 0.05). The effect was significantly weakened when IL-22R1 was silenced (P < 0.05). Conclusion: IL-22R1 combined with IL-22 could promote the proliferation and inhibit apoptosis of colorectal cancer cells. In addition, blocking IL-22R1 could eliminate the influence of IL-22 on the proliferation and apoptosis of colorectal cancer cells.


2018 ◽  
Vol 19 (8) ◽  
pp. 2269 ◽  
Author(s):  
Sangiliyandi Gurunathan ◽  
Muhammad Qasim ◽  
Chanhyeok Park ◽  
Hyunjin Yoo ◽  
Jin-Hoi Kim ◽  
...  

Silver nanoparticles (AgNPs) have gained attention for use in cancer therapy. In this study, AgNPs were biosynthesized using naringenin. We investigated the anti-colon cancer activities of biogenic AgNPs through transcriptome analysis using RNA sequencing, and the mechanisms of AgNPs in regulating colon cancer cell growth. The synthesized AgNPs were characterized using UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The AgNPs were spherical with sizes of 2–10 nm. Cytotoxicity assays indicated that the AgNPs in HCT116 colorectal cancer cells were very effective at low concentrations. The viability and proliferation of colon cancer cells treated with 5 µg/mL biogenic AgNPs were reduced by 50%. Increased lactate dehydrogenase leakage (LDH), reactive oxygen species (ROS) generation, malondialdehyde (MDA), and decreased dead-cell protease activity and ATP generation were observed. This impaired mitochondrial function and DNA damage led to cell death. The AgNPs upregulated and downregulated the most highly ranked biological processes of oxidation–reduction and cell-cycle regulation, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that AgNPs upregulated GADD45G in the p53 pathway. Thus, the AgNP tumor suppressive effects were mediated by cell apoptosis following DNA damage, as well as by mitochondrial dysfunction and cell-cycle arrest following aberrant regulation of p53 effector proteins. It is of interest to mention that, to the best of our knowledge, this study is the first report demonstrating cellular responses and molecular pathways analysis of AgNPs in HCT116 colorectal cancer cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Şeyda Berk ◽  
Joseph A. M. J. L. Janssen ◽  
Peter M. van Koetsveld ◽  
Fadime Dogan ◽  
Naci Değerli ◽  
...  

There are only a few experimental studies which have investigated effects of glucose alone, and glucose in combination with insulin/insulin-like growth factors (IGF) on the growth of colon cancer. In the present study, we studied in vitro in human colorectal cancer cells originating from four Dukes’ stages of colorectal cancer the effects of glucose, insulin and IGFs on proliferation, migration, cell cycle progression and gene expression of the IGF system. Growth of colon cancer cells originating from a Dukes’ stage A was glucose-dependent, whereas growth of cancer cells from Dukes’ stage B, C and D was glucose-independent. Stimulatory effects of insulin and IGFs on cell growth were observed only in colon cancer cells originating from Dukes’ stage C and D. IGF-II stimulated migration in Dukes’ stage B cells only. The growth stimulatory effects in Dukes’ stage C and D colorectal cancer cells were accompanied by G2/M arrest and associated with an increased IGF-IR/IGF-II receptor ratio. In conclusion, our in vitro data suggest that the stimulating effects of glucose, IGFs and insulin on proliferation differ between colorectal cancer cells from early and late Dukes’ stages. Stimulatory effects of glucose on proliferation appear predominantly present in stage Dukes’ stage A colorectal cancer cells, while in contrast growth factor-mediated stimulation of cell proliferation is more pronounced in Dukes’ late stage (metastasized) colorectal cancer cells. Moreover, our study suggests that a stringent glucose control may be important to control tumor growth in early stages of colorectal cancer, while inhibition of the endocrine actions of the IGFs and insulin become more important in the late (metastasized) stages of colorectal cancer to restrain growth of colon cancer cells.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 630 ◽  
Author(s):  
Alex Gordon-Weeks ◽  
Su Yin Lim ◽  
Arseniy Yuzhalin ◽  
Serena Lucotti ◽  
Jenny Adriana Francisca Vermeer ◽  
...  

Hepatic metastatic growth is dependent upon stromal factors including the matrisomal proteins that make up the extracellular matrix (ECM). Laminins are ECM glycoproteins with several functions relevant to tumour progression including angiogenesis. We investigated whether metastatic colon cancer cells produce the laminins required for vascular basement membrane assembly as a mechanism for the promotion of angiogenesis and liver metastasis growth. qPCR was performed using human-specific primers to laminin chains on RNA from orthotopic human colorectal liver metastases. Laminin α5 (LAMA5) expression was inhibited in colon cancer cells using shRNA. Notch pathway gene expression was determined in endothelia from hepatic metastases. Orthotopic hepatic metastases expressed human laminin chains α5, β1 and γ1 (laminin 511), all of which are required for vascular basement membrane assembly. The expression of Laminin 511 was associated with reduced survival in several independent colorectal cancer cohorts and angiogenesis signatures or vessel density significantly correlated with LAMA5 expression. Colorectal cancer cells in culture made little LAMA5, but its levels were increased by culture in a medium conditioned by tumour-derived CD11b+ myeloid cells through TNFα/NFκB pathway signalling. Down-regulation of LAMA5 in cancer cells impaired liver metastatic growth and resulted in reduced intra-tumoural vessel branching and increased the expression of Notch pathway genes in metastasis-derived endothelia. This data demonstrates a mechanism whereby tumour inflammation induces LAMA5 expression in colorectal cancer cells. LAMA5 is required for the successful growth of hepatic metastases where it promotes branching angiogenesis and modulates Notch signalling.


2021 ◽  
Vol 22 (11) ◽  
pp. 5566
Author(s):  
Junyan Qu ◽  
Cheng Zeng ◽  
Tingting Zou ◽  
Xu Chen ◽  
Xiaolong Yang ◽  
...  

Colorectal cancer (CRC) is the third leading malignant tumor in the world, which has high morbidity and mortality. In this study we found that trichodermic acid (TDA), a secondary metabolite isolated from the plant endophytic fungus Penicillium ochrochloronthe with a variety of biological and pharmacological activities, exhibited the antitumor effects on colorectal cancer cells in vitro and in vivo. Our results showed that TDA inhibited the proliferation of colon cancer cells in a dose-dependent manner. TDA induces sustained endoplasmic reticulum stress, which triggers apoptosis through IRE1α/XBP1 and PERK/ATF4/CHOP pathways. In addition, we found that TDA mediated endoplasmic reticulum stress also induces autophagy as a protective mechanism. Moreover, combined treatment of TDA with autophagy inhibitors significantly enhanced its anticancer effect. In conclusion, our results indicated that TDA can induce ER stress and autophagy mediated apoptosis, suggesting that targeting ER stress and autophagy may be an effective strategy for the treatment of CRC.


Sign in / Sign up

Export Citation Format

Share Document