Exosomal miR-214-5p Released from Glioblastoma Cells Modulates Inflammatory Response of Microglia after Lipopolysaccharide Stimulation through Targeting CXCR5

2019 ◽  
Vol 18 (1) ◽  
pp. 78-87 ◽  
Author(s):  
Jian-kai Yang ◽  
Hong-jiang Liu ◽  
Yuanyu Wang ◽  
Chen Li ◽  
Ji-peng Yang ◽  
...  

Background and Objective: Exosomes communicate inter-cellularly and miRNAs play critical roles in this scenario. MiR-214-5p was implicated in multiple tumors with diverse functions uncovered. However, whether miR-214-5p is mechanistically involved in glioblastoma, especially via exosomal pathway, is still elusive. Here we sought to comprehensively address the critical role of exosomal miR-214-5p in glioblastoma (GBM) microenvironment.Methods:The relative expression of miR-214-5p was determined by real-time PCR. Cell viability and migration were measured by MTT and transwell chamber assays, respectively. The secretory cytokines were measured with ELISA kits. The regulatory effect of miR-214-5p on CXCR5 expression was interrogated by luciferase reporter assay. Protein level was analyzed by Western blot.Results:We demonstrated that miR-214-5p was aberrantly overexpressed in GBM and associated with poorer clinical prognosis. High level of miR-214-5p significantly contributed to cell proliferation and migration. GBM-derived exosomal miR-214-5p promoted inflammatory response in primary microglia upon lipopolysaccharide challenge. We further identified CXCR5 as the direct target of miR-214- 5p in this setting.Conclusion:Overexpression of miR-214-5p in GBM modulated the inflammatory response in microglia via exosomal transfer.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Pengjun Zhang ◽  
Jianmei Sun ◽  
Caihong Liang ◽  
Bingjie Gu ◽  
Yang Xu ◽  
...  

Accumulating data have implicated that long noncoding RNA (lncRNA) plays an important role in osteoarthritis (OA), which may function as a competitive endogenous RNA (ceRNA) of microRNAs (miRNAs). lncRNA IGHCγ1 has been demonstrated to regulate inflammation and autoimmunity. Nonetheless, the altering effect of IGHCγ1 in OA remains unclear. This study is aimed at investigating the mechanism and function of lncRNA IGHCγ1 in OA. CCK-8, EdU, and transwell assays were used to estimate macrophage proliferation and migration. Fluorescence in situ hybridization (FISH) was performed to estimate the local expression of lncRNA IGHCγ1 in macrophages. Luciferase reporter assay was adopted to validate the ceRNA role of IGHCγ1 as miRNA sponge. lncRNA IGHCγ1 was primarily localized in macrophage cytoplasm and upregulated in OA. miR-6891-3p inhibited macrophage proliferation, migration, and inflammatory response by targeting TLR4, while lncRNA IGHCγ1 promoted TLR4 expression by functioning as a ceRNA for miR-6891-3p through the NF-κB signal in macrophages. This study strongly supports that lncRNA IGHCγ1 regulates inflammatory response via regulating the miR-6891-3p/TLR4/NF-κB axis in macrophages.


2018 ◽  
Vol 48 (4) ◽  
pp. 1735-1746 ◽  
Author(s):  
Guanghui Zhu ◽  
Lianming Zhou ◽  
Haijun Liu ◽  
Yuanzhou Shan ◽  
Xueli Zhang

Background/Aims: MicroRNAs (miRNAs) have been shown to participate in the development of pancreatic ductal adenocarcinoma (PDAC) by modulating multiple cellular processes. Increased miR-224 expression enhances proliferation and metastasis in human cancers. This study aimed to investigate the role of miR-224 and its underlying mechanism of action in PDAC. Methods: BrdU, MTT, and cell migration assays were performed to determine cell proliferation, viability, and migration, respectively. The binding sites of miR-224 were identified using a luciferase reporter system, whereas protein expression of target genes was determined by immunoblotting and immunofluorescence analyses. A BALB/c nude mouse xenograft model was used to evaluate the role of miR-224 in vivo. Results: We demonstrated that miR-224 expression was enhanced in PDAC cells and tissues, and was related to migration and proliferation. Noticeably, miR-224 overexpression promoted the proliferation, migration, and metastasis of Panc1 cells, while miR-224 inhibition had the reverse effect on PDAC cells. Moreover, we found that thioredoxin-interacting protein (TXNIP) is a target of miR-224. The results also indicated that miR-224 inversely regulated TXNIP by binding directly to its 3′-untranslated region, which resulted in the activation of hypoxia-inducible factor 1α (HIF1α). Further, either TXNIP re-expression or HIF1α depletion abolished the effects of miR-224 on the proliferation and migration of PDAC cells in vitro and in vivo. Regarding the relationship of TXNIP and HIF1α, we found that TXNIP mediated the nuclear export of HIF1α and its degradation by forming a complex with HIF1α. Conclusion: The miR-224-TXNIP-HIF1α axis may be useful in developing novel therapies for PDAC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tinghui Duan ◽  
Diyuan Zhou ◽  
Yizhou Yao ◽  
Xinyu Shao

Colorectal cancer (CRC) is one of the most frequent malignant neoplasms worldwide, and the effect of treatments is limited. Fibroblast growth factor 1 (FGF1) has been involved in a wide variety of several malignant diseases and takes part in the tumorigenesis of CRC. However, the function and mechanism of FGF1 in CRC remains elusive. In this study, the results indicated that FGF1 is elevated in CRC tissues and linked with poor prognosis (P < 0.001). In subgroup analysis of FGF1 in CRC, regardless of any clinic-factors except gender, high level FGF1 expression was associated with markedly shorter survival (P < 0.05). In addition, the expression of p-S6K1 and FGF1 was not associated in normal tissue (P = 0.781), but their expression was closely related in tumor tissue (P = 0.010). The oncogenic role of FGF1 was determined using in vitro and in vivo functional assays. FGF1 depletion inhibited the proliferation and migration of CRC cells in vitro and vivo. FGF1 was also significantly correlated with mTOR-S6K1 pathway on the gene and protein levels (P < 0.05). In conclusion, FGF1 acts as a tumor activator in CRC, and against FGF1 may provide a new visual field on treating CRC, especially for mTORC1-targeted resistant patients.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245832
Author(s):  
Yu Zhou ◽  
Yuan Yuan ◽  
Liuyi Li ◽  
Xueliang Wang ◽  
Yimin Quan ◽  
...  

HER2 amplification greatly contributes to the tumorigenesis of multiple cancers. Intronic miR-4728-5p is transcribed along with its host gene HER2. However, little is known about the role of miR-4728-5p in cancer. This study aims to elucidate the potential role of miR-4728-5p and the underlying mechanism in breast cancer. Kaplan-Meier analysis showed that higher expression of HER2 led to worse survival outcomes in breast cancer patients. The TCGA dataset revealed that compared to normal breast tissues, HER2 and miR-4728-5p levels were significantly upregulated in breast cancer tissues with a positive correlation. In functional assays, miR-4728-5p was confirmed to promote the proliferation and migration in breast cancer cell BT474. EBP1 was identified as a direct target of miR-4728-5p via bioinformatics and luciferase reporter assays. miR-4728-5p was further demonstrated to increase HER2 expression and promote cell proliferation and migration by directly inhibiting EBP1 in breast cancer. Taken together, the HER2-intronic miR-4728-5p/EBP1/HER2 feedback loop plays an important role in promoting breast cancer cell proliferation and migration. Our study provides novel insights for targeted therapies of breast cancer.


2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Shijie Gao ◽  
Liang Liu ◽  
Shibo Zhu ◽  
Dawei Wang ◽  
Qiang Wu ◽  
...  

Abstract Recent studies have demonstrated that microRNAs (miRNAs) are involved in many pathological conditions including osteoarthritis (OA). In the present study, we aimed to investigate the role of miR-197 in OA and the potential molecular mechanism. The expression levels of miR-197 were detected by quantitative real-time PCR analysis. Cell proliferation and migration abilities were performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-di-phenyltetrazolium bromide and transwell assays. The concentrations of inflammatory cytokines, including IL-1β, IL-6, and TNF-α, were detect using ELISA assay. Furthermore, luciferase reporter and rescue assays were applied to identify the functional target gene of miR-197 in OA. The results showed that miR-197 expression was significantly down-regulated in the OA cartilage tissues compared with normal cartilage tissues, accompanied by up-regulation of EIF4G2 expression. An inverse correlation was found between EIF4G2 and miR-197 expressions in OA cartilage tissues. Treatment with miR-197 mimics promoted the growth and migration abilities of chondrocytes, while miR-197 inhibitors induced the opposite effects. Furthermore, restoration of miR-197 significantly decreased IL-1β, IL-6, and TNF-α expression, whereas knockdown of miR-197 led to a induction in these inflammatory mediators. Moreover, EIF4G2 was predicted and confirmed as a directly target of miR-197. Overexpressed miR-197 could down-regulate EIF4G2 expression in chondrocytes, while miR-197 knockdown could elevate EIF4G2 expression. Additionally, EIF4G2 overexpression reversed the effects of miR-197 mimics on chondrocytes proliferation, migration, and inflammation. Taken together, our study demonstrated that miR-197 promotes chondrocyte proliferation, increases migration, and inhibits inflammation in the pathogenesis of OA by targeting EIF4G2, indicating the potential therapeutic targets of the miR-197/EIF4G2 axis for OA treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chen Chen ◽  
Jun Zhao ◽  
Jing-ni Liu ◽  
Chenyu Sun

Background. According to recent studies, ferroptosis is closely related to the efficacy and prognosis of tumour treatment. However, the role of ferroptosis in esophageal squamous cell carcinoma (ESCC) has not been explored comprehensively. Materials and Methods. The esophageal cancer (EC) transcriptome data was downloaded from The Cancer Genome Atlas (TCGA), then analyzed, to obtain the differentially expressed messenger RNA (mRNA), microRNA (miRNA), and long noncoding RNA (lncRNA) between groups with the low and high Ferroptosis Potential Index (FPI) and construct a ferroptosis-associated ceRNA network. In addition, the expression of ARHGEF26-AS1 and miR-372-3p in ESCC cell lines was assessed, and the appropriate cell lines were selected. The interaction between ARHGEF26-AS1, miR-372-3p, and ADAM23 was also determined through a dual-luciferase reporter assay. Moreover, the Western blot, Cell Counting Kit-8 (CCK-8), wound healing, cell viability, and cell death assays were conducted to establish the biological functions of the ARHGEF26-AS1/miR-372-3p/ADAM23 pathway in ESCCs. Results. An FPI scoring model reflecting the activity of the ferroptosis pathway was constructed, and a ferroptosis-associated ceRNA network was established. The findings revealed that low expression of ADAM23 and ARHGEF26-AS1 as well as high expression of miR-372-3p was associated with poor prognosis and a lower FPI score in EC patients. Functionally, overexpression of ADAM23 and ARHGEF26-AS1 and the miR-372-3p inhibitor not only promoted ferroptosis in ESCC cells in vitro but also inhibited the proliferation and migration of cells. Mechanistically, ARHGEF26-AS1 upregulated the expression of ADAM23 by competitively binding to miR-372-3p. Conclusions. The study showed that the lncRNA, ARHGEF26-AS1 acts as a miR-372-3p sponge that regulates the neuropeptide LGI1 receptor ADAM23 expression. This in turn not only inhibits the proliferation and migration of ESCC cells but also upregulates the ferroptosis pathway. A neuropeptide-related ferroptosis regulatory pathway was identified in this study.


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Min Chu ◽  
Yingchao Fan ◽  
Liting Wu ◽  
Xiaoyan Ma ◽  
Jinfeng Sao ◽  
...  

Abstract Purpose This study aimed to explore the role of long non-coding RNA (lncRNA) BDNF-AS in the progression of multiple myeloma (MM). Methods The expression of BDNF-AS, miR-125a-5p, and miR-125b-5p in MM serum and cell lines were detected by quantitative reverse transcriptase PCR (qRT-PCR). The binding relationships between miR-125a/b-5p and BDNF-AS or Bcl-2 were predicted by Starbase and verified by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2′-deoxyuridine (EdU) staining assay. Cell migration was evaluated by wound healing assay. The expression levels of apoptosis-related proteins were evaluated by Western blot analysis. The role of BDNF-AS was also investigated in a xenograft tumor model in vivo. Results BDNF-AS was significantly upregulated, while miR-125a-5p and miR-125b-5p were downregulated in MM serum and corresponding cancer cell lines. Knockdown of BDNF-AS effectively inhibited the proliferation and migration of MM.1S and U266 cells, and co-transfection of miR-125a-5p or miR-125b-5p inhibitor and sh-BDNF-AS enhanced cell proliferation and migration compared with that in sh-BDNF-AS group. Knockdown of miR-125a-5p or miR-125b-5p significantly enhanced the proliferation and migration of MM.1S and U266 cells, and co-transfection of sh-Bcl-2 and miR-125a/b-5p inhibitor inhibited cell proliferation compared with that in miR-125a/b-5p inhibitor group. Moreover, knockdown of BDNF-AS increased the expression levels of apoptosis-related proteins (cleaved caspase 3 and cleaved PARP), while knockdown of miR-125a-5p or miR-125b-5p reduced the expression levels of these apoptosis-related proteins compared with knockdown of BDNF-AS. Furthermore, knockdown of BDNF-AS effectively suppressed MM tumor growth in vivo. Conclusion Our findings revealed that knockdown of BDNF-AS inhibited the progression of MM by targeting the miR-125a/b-5p-Bcl-2 axis, indicating that BDNF-AS might serve as a novel drug target for MM.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jingyu Wang ◽  
Hao Zhang ◽  
Jie Situ ◽  
Mingzhao Li ◽  
Hua Sun

Abstract Background The large involvement of long non-coding RNAs (LncRNAs) in the biological progression of numerous cancers has been reported. The function of lncRNA KCNQ1OT1 in bladder cancer (BC) remains largely unknown. This study aimed to explore the critical role of KCNQ1OT1 in BC. Materials and methods The qRT-PCR was applied to test the expression of RNAs. Cell proliferation was detected by CCK-8 and colony formation assays. Cell apoptosis was measured by TUNEL and flow cytometry experiments. Wound healing and transwell assays were employed to evaluate cell migration and invasion ability respectively. Western blot assay was used to measure relevant protein expression. Immunofluorescence (IF) staining was used to observe EMT process in BC. Results KCNQ1OT1 was significantly overexpressed in BC tissue and cell lines. KCNQ1OT1 depletion repressed cell proliferation, migration and invasion, whereas encouraged cell apoptosis. KCNQ1OT1 was a negatively/positively correlated with miR-145-5p/PCBP2 in respect with expression. Mechanically, KCNQ1OT1 was sponge of miR-145-5p and up-regulated the expression of PCBP2. MiR-145-5p inhibition and PCBP2 up-regulation could countervail the tumor-inhibitor role of KCNQ1OT1 knockdown in BC. Conclusion KCNQ1OT1 serves as competing endogenous RNA (ceRNA) to up-regulate PCBP2 via sponging miR-145-5p in BC progression.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Xing Peng ◽  
Jinyu Gao ◽  
Chunyan Cai ◽  
Yumei Zhang

Abstract Cervical cancer (CC), an aggressive malignancy, has a high risk of relapse and death, mainly occurring in females. Accumulating investigations have confirmed the critical role of long noncoding RNAs (lncRNAs) in diverse cancers. LncRNA LINC01503 has been reported as an oncogene in several cancers. Nonetheless, its role and molecular mechanism in CC have not been explored. In the present study, we found that FXYD3 expression was considerably up-regulated in CC tissues and cells. Moreover, FXYD3 deficiency conspicuously hampered cell proliferation and migration while facilitated cell apoptosis in CC cells. Subsequently, molecular mechanism experiments implied that FXYD3 was a downstream target gene of miR-342-3p, and FXYD3 expression was reversely mediated by miR-342-3p. Moreover, we discovered that LINC01503 acted as the endogenous sponge for miR-342-3p. Besides, LINC01503 negatively regulated miR-342-3p expression and positively regulated FXYD3 expression in CC. Rescue assays revealed that LINC01503 depletion-induced repression on CC progression could be partly recovered by miR-342-3p inhibition, and then the co-transfection of sh-FXYD3#1 rescued this effect. Conclusively, LINC01503 aggravated CC progression through sponging miR-342-3p to mediate FXYD3 expression, providing promising therapeutic targets for CC patients.


Author(s):  
Ming Zhang ◽  
Yan Wang ◽  
Longyang Jiang ◽  
Xinyue Song ◽  
Ang Zheng ◽  
...  

Abstract Background Adriamycin (ADR) resistance is one of the main obstacles to improving the clinical prognosis of breast cancer patients. Long noncoding RNAs (lncRNAs) can regulate cell behavior, but the role of these RNAs in the anti-ADR activity of breast cancer remains unclear. Here, we aim to investigate the imbalance of a particular long noncoding RNA, lncRNA CBR3 antisense RNA 1 (CBR3-AS1), and its role in ADR resistance. Methods Microarray analysis of ADR-resistant breast cancer cells was performed to identify CBR3-AS1. CCK-8 and colony formation assays were used to detect the sensitivity of breast cancer cells to ADR. Dual-luciferase reporter, RNA pulldown, IHC and western blot analyses were used to verify the relationship between the expression of CBR3-AS1, miRNA and target genes. For in vivo experiments, the effect of CBR3-AS1 on breast cancer resistance was observed in a xenograft tumor model. The role of CBR3-AS1 in influencing ADR sensitivity was verified by clinical breast cancer specimens from the TCGA, CCLE, and GDSC databases. Results We found that CBR3-AS1 expression was significantly increased in breast cancer tissues and was closely correlated with poor prognosis. CBR3-AS1 overexpression promoted ADR resistance in breast cancer cells in vitro and in vivo. Mechanistically, we identified that CBR3-AS1 functioned as a competitive endogenous RNA by sponging miR-25-3p. MEK4 and JNK1 of the MAPK pathway were determined to be direct downstream proteins of the CBR3-AS1/miR-25-3p axis in breast cancer cells. Conclusions In summary, our findings demonstrate that CBR3-AS1 plays a critical role in the chemotherapy resistance of breast cancer by mediating the miR-25-3p and MEK4/JNK1 regulatory axes. The potential of CBR3-AS1 as a targetable oncogene and therapeutic biomarker of breast cancer was identified.


Sign in / Sign up

Export Citation Format

Share Document