scholarly journals Molecular Dynamics Study of the Effect of Electrostatic Interactions on the Biphenyl Structure in the Active HNO3 Solvent~!2010-02-01~!2010-04-16~!2010-06-17~!

2010 ◽  
Vol 4 (1) ◽  
pp. 10-16
Author(s):  
Kholmirzo Kholmurodov ◽  
Alena Chulkova ◽  
Kenji Yasuoka
Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3018 ◽  
Author(s):  
Gao Tu ◽  
Tingting Fu ◽  
Fengyuan Yang ◽  
Lixia Yao ◽  
Weiwei Xue ◽  
...  

The interaction of death-associated protein kinase 1 (DAPK1) with the 2B subunit (GluN2B) C-terminus of N-methyl-D-aspartate receptor (NMDAR) plays a critical role in the pathophysiology of depression and is considered a potential target for the structure-based discovery of new antidepressants. However, the 3D structures of C-terminus residues 1290–1310 of GluN2B (GluN2B-CT1290-1310) remain elusive and the interaction between GluN2B-CT1290-1310 and DAPK1 is unknown. In this study, the mechanism of interaction between DAPK1 and GluN2B-CT1290-1310 was predicted by computational simulation methods including protein–peptide docking and molecular dynamics (MD) simulation. Based on the equilibrated MD trajectory, the total binding free energy between GluN2B-CT1290-1310 and DAPK1 was computed by the mechanics generalized born surface area (MM/GBSA) approach. The simulation results showed that hydrophobic, van der Waals, and electrostatic interactions are responsible for the binding of GluN2B-CT1290–1310/DAPK1. Moreover, through per-residue free energy decomposition and in silico alanine scanning analysis, hotspot residues between GluN2B-CT1290-1310 and DAPK1 interface were identified. In conclusion, this work predicted the binding mode and quantitatively characterized the protein–peptide interface, which will aid in the discovery of novel drugs targeting the GluN2B-CT1290-1310 and DAPK1 interface.


2019 ◽  
Vol 24 (9) ◽  
pp. 928-938 ◽  
Author(s):  
Luca Palazzolo ◽  
Chiara Paravicini ◽  
Tommaso Laurenzi ◽  
Sara Adobati ◽  
Simona Saporiti ◽  
...  

SLC6A14 (ATB0,+) is a sodium- and chloride-dependent neutral and dibasic amino acid transporter that regulates the distribution of amino acids across cell membranes. The transporter is overexpressed in many human cancers characterized by an increased demand for amino acids; as such, it was recently acknowledged as a novel target for cancer therapy. The knowledge on the molecular mechanism of SLC6A14 transport is still limited, but some elegant studies on related transporters report the involvement of the 12 transmembrane α-helices in the transport mechanism, and describe structural rearrangements mediated by electrostatic interactions with some pivotal gating residues. In the present work, we constructed a SLC6A14 model in outward-facing conformation via homology modeling and used molecular dynamics simulations to predict amino acid residues critical for substrate recognition and translocation. We docked the proteinogenic amino acids and other known substrates in the SLC6A14 binding site to study both gating regions and the exposed residues involved in transport. Interestingly, some of these residues correspond to those previously identified in other LeuT-fold transporters; however, we could also identify a novel relevant residue with such function. For the first time, by combined approaches of molecular docking and molecular dynamics simulations, we highlight the potential role of these residues in neutral amino acid transport. This novel information unravels new aspects of the human SLC6A14 structure–function relationship and may have important outcomes for cancer treatment through the design of novel inhibitors of SLC6A14-mediated transport.


2019 ◽  
Vol 9 (4) ◽  
pp. 315-321
Author(s):  
Fateme Bagherolhashemi ◽  
Mohammad Reza Bozorgmehr ◽  
Mohammad Momen-Heravi

Abstract In this work, the interactions between adenine–adenine di-nucleotide (DA2N) and carbon nanotube (CNT) in the presence of Lysyllysine (LL) was studied by the molecular dynamics simulation. Different carbon nanotubes including (5.5), (6.6) and (7.7) were used to investigate the effect of CNT type. The binding energies were calculated using the molecular mechanics-Poisson Bolzmann surface area method. The results showed that the contribution of the van der Waals interactions between DA2N and CNT was greater than that of the electrostatic interactions. The LL significantly enhanced the electrostatic interactions between the DA2N and CNT (6.6). The quantum calculations revealed that the sensor properties of the DA2N were not significantly affected by the CNT and LL. However, the five-membered ring of adenine played a more important role in the sensing properties of the DA2N. The obtained results are consistent with the previous experimental observations that can help to understand the molecular mechanism of the interaction of DA2N with CNT. Graphic abstract


2020 ◽  
Vol 19 (04) ◽  
pp. 2050016
Author(s):  
Mahesh Koirala ◽  
Emil Alexov

Receptor–ligand interactions are involved in various biological processes, therefore understanding the binding mechanism and ability to predict the binding mode are essential for many biological investigations. While many computational methods exist to predict the 3D structure of the corresponding complex provided the knowledge of the monomers, here we use the newly developed DelPhiForce steered Molecular Dynamics (DFMD) approach to model the binding of barstar to barnase to demonstrate that first-principles methods are also capable of modeling the binding. Essential component of DFMD approach is enhancing the role of long-range electrostatic interactions to provide guiding force of the monomers toward their correct binding orientation and position. Thus, it is demonstrated that the DFMD can successfully dock barstar to barnase even if the initial positions and orientations of both are completely different from the correct ones. Thus, the electrostatics provides orientational guidance along with pulling force to deliver the ligand in close proximity to the receptor.


Molecular dynamics computer simulations have been made on the paraelectric phase of solid sodium nitrite and on the melt. The interionic-force model used in the calculations is based on a rigid-ion representation of the electrostatic interactions, supplemented by a set of atom-atom potentials. Reorientation of the anions in the solid is shown to occur predominantly about an axis parallel to the crystallographic c -direction. The structure of the molten salt is found to be characterized by a high degree of local octahedral coordination. Agreement with the available experimental data is satisfactory.


2019 ◽  
Author(s):  
Qiang Shao ◽  
Jinan Wang ◽  
Weiliang Zhu

AbstractIn this work, the combined influence of urea and KI on protein native structure is quantitatively investigated through the comparative molecular dynamics simulations on the structural dynamics of a polypeptide of TRPZIP4 in a series of urea/KI mixed solutions (urea concentration: 4M, KI salt concentration: 0M-6M). The observed enhanced denaturing ability of urea/KI mixture can be explained by direct interactions of urea/K+/water towards protein (electrostatic and vdW interactions from urea and electrostatic interactions from K+ and water) and indirect influence of KI on the strengthened interaction of urea towards protein backbone and side-chain. The latter indirect influence is fulfilled through the weakening of hydrogen bonding network among urea and water by the appearance of K+–water and I—urea interactions. As a result, the denaturing ability enhancement of urea and KI mixed solution is induced by the collaborative behavior of urea and KI salt.


2020 ◽  
Author(s):  
Shahin Sowlati-Hashjin ◽  
Paola Carbone ◽  
Mikko Karttunen

AbstractPolyhexamethylene biguanide (PHMB) is a cationic polymer with antimicrobial and antiviral properties. It has been commonly accepted that the antimicrobial activity is due the ability of PHMB to perforate the bacterial phospholipid membrane leading ultimately to its death. In this study we show by the means of atomistic molecular dynamics (MD) simulations that while the PHMB molecules attach to the surface of the phospholipid bilayer and partially penetrate it, they do not cause any pore formation at least within the microsecond simulation times. The polymers initially adsorb onto the membrane surface via the favourable electrostatic interactions between the phospholipid headgroups and the biguanide groups, and then partially penetrate the membrane slightly disrupting its structure. This, however, does not lead to the formation of any pores. The microsecond-scale simulations reveal that it is unlikely for PHMB to spontaneously pass through the phospholipid membrane. Our findings suggest that PHMB translocation across the bilayer may take place through binding to the phospholipids. Once inside the cell, the polymer can effectively ‘bind’ to DNA through extensive interactions with DNA phosphate backbone, which can potentially block the DNA replication process or activate DNA repair pathways.TOC Graphic


Sign in / Sign up

Export Citation Format

Share Document