scholarly journals In Vitro Assessment for Antimicrobial Activity of Lactobacillus Helveticus and its Natural Glycopeptides Against Mastitis Causing Pathogens in Dairy Cat

2015 ◽  
Vol 9 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Gundega Gulbe ◽  
Anda Valdovska ◽  
Vaira Saulite ◽  
Jevgenijs Jermolajevs

Probiotic lactic acid bacteria have a great potential to control bovine mastitis as well as they are favourable choice to treat many infectious diseases of human. These bacteria are well known as having many properties which make them beneficial to control pathogenic microorganisms. These include, the ability to adhere to cell, the reduction of pathogenic bacteria adherents, the co–aggregation, the production of organic acids, hydrogen peroxide, bacteriocin and etc., to be safe and non–pathogenic, which antagonize pathogenic microorganisms. However, each strain must be well identified and characterized in vitro before using for disease treatment. The aim of the present study was to screen three kind of test suspensions: TS1, TS2 and TS3, which contains probiotic lactic acid bacterium Lactobacillus helveticus or its natural glycopeptides, and other natural immunomodulators, in order to investigate which content were the most effective in inhibiting several mastitis causing bacteria in dairy cattle: coagulase–positive Staphylococcus aureus, coagulase–negative staphylococci S. haemolyticus, S. saprophyticus, S. simulans, S. vitulinus, and Gram–negative bacteria Citrobacter freundii and Serratia liquefaciens. Test suspensions TS1, TS2 and TS3 were adjusted by pH 6.3, then tested in vitro by well diffusion assay to determine their antimicrobial effect against bacteria. Furthermore haemolytic activity of applied test suspensions were determined. In results TS1 (9-13 mm) and TS2 (10-15 mm) showed the inhibition effect on four of eight tested bacterial strains, whereas TS3 did not displayed any antimicrobial effect. TS2 have a greatest antimicrobial activity as they resulted in the largest inhibition zones.

2012 ◽  
Vol 2 (5) ◽  
pp. 217-226
Author(s):  
E. O. Omwenga ◽  
P. O. Okemo ◽  
P. K. Mbugua

The antimicrobial effect of some selected Samburu medicinal plants was evaluated on bacterial strains like Staphylococcus aureus ‐ ATCC 20591, Bacillus subtillis ‐ Local isolate, Salmonella typhi‐ATCC 2202, Escherichia coli‐STD. 25922 and Pseudomonas aeroginosa ‐ ATCC 25852 and fungal strains like Candida albicans ATCC EK138, Aspergillus niger ATCC 16404, Aspergillusflavus‐Local isolate, Fusarium lateritium‐Local isolate, and Penicillium spp.‐ local isolate. Methanol was used as solvent for the extraction from the selected medicinal plants used by the Samburu community. The in vitro antimicrobial activity was performed by agar disc diffusion and micro‐dilution technique. The most susceptible Gram‐positive bacterium was S. aureus, while the most susceptible Gram‐negative bacterium was P. aeroginosa. The extracts of Gomphocarpus fruticosus (L) W.T. Aiton showed less activity against the bacterial strains investigated. The most active antibacterial plants were Euphorbia scarlatica S. Carter, and Euclea divinoram Hiern. Incidentally most of the extracts were inactive against the fungal strains with only a few proving to be slightly active against the C. albicans i.e. Loranthus acaciae Zucc., Kedrostis pseudogijef (Gilg) C. Jeffrey, Euclea divinoram Hiern. and Croton macrostachyus (A. Rich). Benths. The significant antimicrobial activity of active extracts was compared with the standard antimicrobials, cefrodoxima, amoxicillin and fluconazole. The MICs of the most active plants ranged from 18.75mg/ml to 37.50mg/ml. The MBCs ranged between 18.75mg/ml to75mg/ml. These results were significant at P< 0.01. The findings show that most of the medicinal plants used by the Samburu community have some significant activity on the bacterial but not fungal pathogens known to cause diarrhoea.


2015 ◽  
Vol 68 (2) ◽  
pp. 7721-7727
Author(s):  
Piedad M. Montero Castillo ◽  
Antonio Díaz Caballero ◽  
Marlene Durán Lengua

In the food industry, food preservation techniques that do not use chemical products are becoming more common. Therefore, the aim of this research was to evaluate the antagonistic activity (antibiosis) of lactic-acid bacterial strains against pathogenic microorganisms. Lactic-acid bacterial strains were isolated from layered cheese and a commercial product (yogurt); and the same was done with pathogenic bacteria solely from layered cheese. The lactic-acid bacterial strains were identified as species from the Lactobacilli family, while the pathogenic bacteria from layered cheese were identified as Micrococcaceae family species (Staphylococcus aureus). Subsequently, in the same culture medium, bacteria of each species were sowed in order to determine the inhibitory activity ability of the Lactic Acid Bacteria (BAL) As a result, the highly antagonistic activity of the Lactobacilli (inhibition halos were larger than 0.5 centimeters in diameter) against isolated pathogenic microorganisms was demonstrated.


2019 ◽  
Vol 9 (3) ◽  
pp. 601 ◽  
Author(s):  
Alicia Cervantes-Elizarrarás ◽  
Nelly Cruz-Cansino ◽  
Esther Ramírez-Moreno ◽  
Vicente Vega-Sánchez ◽  
Norma Velázquez-Guadarrama ◽  
...  

Probiotics can act as a natural barrier against several pathogens, such Helicobacter pylori, a bacterium linked to stomach cancer. The aim of the present study was to isolate and identify lactic acid bacteria (LAB) from pulque and aguamiel, and evaluate their probiotic potential and antimicrobial effect on Escherichia coli, Staphylococcus aureus, and Helicobacter pylori. Ten isolates were selected and evaluated for in vitro resistance to antibiotics and gastrointestinal conditions, and antimicrobial activity against E. coli and S. aureus and the effect on H. pylori strains. 16S rRNA identification was performed. Ten potential probiotic isolates were confirmed as belonging to the genera Lactobacillus and Pediococcus. All the strains were susceptible to clinical antibiotics, except to vancomycin. Sixty percent of the isolates exhibited antimicrobial activity against E. coli and S. aureus. The growth of H. pylori ATCC 43504 was suppressed by all the LAB, and the urease activity from all the H. pylori strains was inhibited, which may decrease its chances for survival in the stomach. The results suggest that LAB isolated from pulque and aguamiel could be an option to establish a harmless relationship between the host and H. pylori, helping in their eradication therapy.


2021 ◽  
Vol 1 (2) ◽  
pp. 270-288
Author(s):  
Ashish Christopher ◽  
Dipayan Sarkar ◽  
Kalidas Shetty

Beneficial lactic acid bacteria (LAB)-based fermentation is an effective bioprocessing approach to improve human-health-targeted functional benefits of plant-based food substrates, such as cereal grains. Previously, we observed high phenolic bioactive-linked antioxidant and anti-hyperglycemic properties in whole grain Emmer (hulled). In this study, beneficial LAB (Lactiplantibacillus plantarum) was recruited to ferment (0–72 h) aqueous extracts (0.4 g/mL concentration) of previously optimized hulled Emmer wheat and conventional red spring wheat cv. Barlow. The fermented and unfermented (control) wheat extracts were analyzed for phenolic content, phenolic profile, antioxidant activity, and antihyperglycemic properties (α-amylase and α-glucosidase enzyme inhibitory activity) using in vitro assay models. Additionally, antimicrobial activity against pathogenic bacteria Helicobacter pylori, and potential prebiotic activity supporting the growth of beneficial Bifidobacterium longum were also investigated. Improvement in antioxidant activity and antihyperglycemic functional benefits were observed, while soluble phenolic content remained high after 72 h fermentation. Antimicrobial activity against H. pylori was also observed in 48 and 72 h fermented wheat extracts. This study provides an insight into the efficacy of LAB-based fermentation as a safe bioprocessing tool to design health-targeted functional foods and ingredients from underutilized whole grains like Emmer for targeting type 2 diabetes dietary benefits.


2013 ◽  
Vol 49 (2) ◽  
pp. 241-250 ◽  
Author(s):  
Ania Ochoa Pacheco ◽  
Jorge Marín Morán ◽  
Zenia González Giro ◽  
Adrian Hidalgo Rodríguez ◽  
Rachel Juliet Mujawimana ◽  
...  

The antimicrobial activity of 13 total extracts was evaluated, 10 soft extracts (B) and 3 blended extracts (E) prepared from dry and fresh leaves of Petiveria alliacea L. Various solvents were used for their preparation: hydroalcoholic solution at 30%, 80% and isopropyl alcohol. The antimicrobial effect of the extracts was tested by means of the method of Kirby-Bauer, using four bacterial strains from the ATCC collection (Escherichia coli, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa) and a leveduriform fungus (Candida albicans). The following quality control parameters were determined for most active extracts: physical, physical-chemical and chemical parameters. The results were: nine extracts showed antibacterial activity, being the most concentrated (B8 and E3), the ones with the highest activity in the presence of the bacteria tested; the effect of blended extracts (E1, E2 and E3) was greater in the presence of P. aeruginosa. Blended extracts are considered more potent and active than soft extracts. No antifungal activity was obtained for both types of extracts. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were determined for both extracts, with the following results: MIC-soft extracts (>100 mg/mL), blended extracts (>50 mg/mL); MBC-soft extracts (≥400 mg/mL), blended extracts (≥200 mg/mL) based on fresh leaves.


Author(s):  
Ifra Tun Nur ◽  
Tahmina Jahan ◽  
Sharmin Akter

<p class="abstract"><strong>Background:</strong> Honey is a natural therapeutic agent which manifest antimicrobial activity against a wide range of bacteria. Therefore, the current study was designed to isolate pathogenic bacteria from burn wound and also to determine the anti-bacterial traits of natural and processed honey against infectious agents.</p><p class="abstract"><strong>Methods:</strong> Wound samples were collected from burn unit of Dhaka Medical College Hospital and conventional cultural methods were applied to identify pathogenic microorganisms. A total of six samples including three each of natural and processed honey were tested for the determination of antimicrobial activity by agar well diffusion method.  </p><p class="abstract"><strong>Results:</strong> Among ten wound samples highest load of total viable bacteria was recorded up to 3.7×10<sup>6</sup> cfu/ml. The maximum load of <em>Pseudomonas </em>spp. and <em>Staphylococcus </em>spp. were found up to 1.6×10<sup>4</sup> cfu/ml and 8.7×10<sup>4</sup> cfu/ml respectively. Significant <em>in vitro</em> antimicrobial activity was found in all the samples. Natural honey showed a little bit more efficacy than processed honey. The samples exhibited antibacterial traits against <em>Staphylococcus aureus</em> with a wide zone of inhibition and moderate zone of inhibition against <em>Pseudomonas </em>spp. when they are subjected to 100% concentered honey. <em>E. coli</em> and <em>Klebsiella </em>spp. were remained to be unaffected at 75% and 50% concentrated honey, while <em>S. aureus</em> and <em>Pseudomonas </em>spp. were found to be sensitive at those concentrations.</p><p class="abstract"><strong>Conclusions:</strong> The <em>in vitro</em> efficacy of different types of honey tested against the bacteria dependent on the type of honey and the concentration at which it was administered. In our study 100% concentred honey was more efficient in inhibiting all the tested isolates.</p>


Author(s):  
Хандсүрэн Б ◽  
Дэмбэрэл Ш ◽  
Дүгэрсүрэн Ж

We isolated lactic acid bacteria from fermented dairy products, fermented mare’s milk and cow yogurt, which are traditionally produced by Mongolian herders, and carried out in vitro study of their probiotic properties. Culture 44c is 100% identical to species Lactobacillus helveticus (Lhelveticus) or a strain KT368987, isolated from Mongolian airag, while culture 65b is 99% identical to Lactobacillus delbreuckii subsp. bulgaricus (L.bulgaricus) or strain CP016393 isolated from camel fermented milk in Gobi-Altai aimag and characteristics of both cultures were the best among all cultures obtained in the present study. Isolated lactic acid rods completely inhibited the growth of gastro-intestinal pathogens which spread among livestock (E.coli 09, E.coli 026, S.abortusovis 0068) and Mongolian population (S.aureus 5695, S.aureus 5068, S.aureus SA27, E.coli 10963, E.coli 10977). As well as, we determined the properties, including resistance to the acidic environment of digestive tract and activity when using with common antibiotics, which are the basic requirements for bacterial strains used in functional food production. According to the result, when pH of the environment reached 3.5 or 4.0, growth rate of the strains was over 80 percent and the lactic acid strains were variably resistant to 10 antibiotics of 5 classes (penicillin, aminoglycoside, cephalosporin and macrolide). For example; Formation of 8.9±0.87 mm zone around all antibiotic discs for culture 44c of L.helveticus demonstrates the culture can be used in combination with these antibiotics for therapeutic purposes. Besides of these characteristics, CFU per ml was determined by growing on MRS nutrient medium under anaerobic condition. Moreover, CFU/ml was determined because its spectrum of activity depends on the number of bacteria per 1ml. L.helveticus 44c reached its highest volume (2503х1010) at 48th hour of growth, while L.bulgaricus 65b reached its highest volume (2503х1010) at 72th hour of growth. After they reached their highest volume, both of them tended to decrease. For this reason, these strains, especially L.helveticus 44c and L.bulgaricus 65b strains, are possible to be used as a source material for probiotics or functional food products.


Author(s):  
Vijayanand B. Warad ◽  
Prasanna Habbu ◽  
Rajesh Shastri

Objective: To screen the antimicrobial activity Of Callyspongia Diffusa (Marine Sponge) Associated Endophytic Bacterial Strains.Methods: We have isolated endophytic bacterias CDB-1 and CDB-2 from marine sponge Callyspongia diffusa and identified as Pseudomonas taiwanensis strain and Lysinibacillussphaericus strain respectively by the phylogenetic analysis. Fractions of CDB-1 and CDB-2 were screened for in vitro and in vivo antimicrobial activities against pathogenic bacteria and mycobacterium tuberculosis H37 RV strain by Minimum Inhibitory Concentration (MIC) method.Results: The lowest MIC against Kleibesella pnumoniae, Escherichia coli and Enterococcus feacalis was found to be 0.2 µg/ml and 0.4 µg/ml respectively for CDB-2. A significant antifungal activity was observed against Candida albicans (0.2-0.8 µg/ml) and Aspergillus niger (0.2-0.4 µg/ml). Further, Chloroform fraction of CDB-1 and ethyl acetate fraction of CDB-2 have shown significant anti-tubercular activity against the tested organism with MIC of 6.25µg/ml. This was supported by in vivo antimicrobial activity against K. Pneumonia infection in mice and least haemolytic activity against erythrocytes was observed. Compared to chloramphenicol.Conclusion: In this study, we have reported the marine natural species offer a rich source of bioactive metabolites that can exploit to develop novel, useful and potential therapeutic agents.


2020 ◽  
Vol 11 ◽  
pp. 37-43
Author(s):  
Prof. Teodora P. Popova ◽  
Toshka Petrova ◽  
Ignat Ignatov ◽  
Stoil Karadzhov

The antimicrobial action of the dietary supplement Oxidal® was tested using the classic Bauer and Kirby agar-gel diffusion method. Clinical and reference strains of Staphylococcus aureus and Escherichia coli were used in the studies. The tested dietary supplement showed a well-pronounced inhibitory effect against the microbial strains commensurable with that of the broad-spectrum chemotherapeutic agent Enrofloxacin and showed even higher activity than the broad spectrum antibiotic Thiamphenicol. The proven inhibitory effect of the tested dietary supplement against the examined pathogenic bacteria is in accordance with the established clinical effectiveness standards for antimicrobial agents.


Sign in / Sign up

Export Citation Format

Share Document