scholarly journals Examining Microstructural White Matter in Active Duty Soldiers with a History of Mild Traumatic Brain Injury and Traumatic Stress

2017 ◽  
Vol 11 (1) ◽  
pp. 46-57 ◽  
Author(s):  
Michael N. Dretsch ◽  
Rael T. Lange ◽  
Jeffery S. Katz ◽  
Adam Goodman ◽  
Thomas A. Daniel ◽  
...  

Background:There is a high comorbidity of posttraumatic stress (PTS) and mild traumatic brain injury (mTBI), with largely overlapping symptomatology, in military service members.Objective:To examine white matter integrity associated with PTS and mTBI as assessed using diffusion tensor imaging (DTI).Method:Seventy-four active-duty U.S. soldiers with PTS (n = 16) and PTS with co-morbid history of mTBI (PTS/mTBI; n = 28) were compared to a military control group (n = 30). Participants received a battery of neurocognitive and clinical symptom measures. The number of abnormal DTI values was determined (>2 SDs from the mean of the control group) for fractional anisotropy (FA) and mean diffusivity (MD), and then compared between groups. In addition, mean DTI values from white matter tracts falling into three categories were compared between groups: (i) projection tracts: superior, middle, and inferior cerebellar peduncles, pontine crossing tract, and corticospinal tract; (ii) association tracts: superior longitudinal fasciculus; and (iii) commissure tracts: cingulum bundle (cingulum-cingulate gyrus and cingulum-hippocampus), and corpus callosum.Results:The comorbid PTS/mTBI group had significantly greater traumatic stress, depression, anxiety, and post-concussive symptoms, and they performed worse on neurocognitive testing than those with PTS alone and controls. The groups differed greatly on several clinical variables, but contrary to what we hypothesized, they did not differ greatly on primary and exploratory analytic approaches of hetero-spatial whole brain DTI analyses.Conclusion:The findings suggest that psychological health conditions rather than pathoanatomical changes may be contributing to symptom presentation in this population.

Author(s):  
Scott F. Sorg ◽  
Victoria C. Merritt ◽  
Alexandra L. Clark ◽  
Madeleine L. Werhane ◽  
Kelsey A. Holiday ◽  
...  

Abstract Objective: We examined whether intraindividual variability (IIV) across tests of executive functions (EF-IIV) is elevated in Veterans with a history of mild traumatic brain injury (mTBI) relative to military controls (MCs) without a history of mTBI. We also explored relationships among EF-IIV, white matter microstructure, and posttraumatic stress disorder (PTSD) symptoms. Method: A total of 77 Veterans (mTBI = 43, MCs = 34) completed neuropsychological testing, diffusion tensor imaging (DTI), and PTSD symptom ratings. EF-IIV was calculated as the standard deviation across six tests of EF, along with an EF-Mean composite. DSI Studio connectometry analysis identified white matter tracts significantly associated with EF-IIV according to generalized fractional anisotropy (GFA). Results: After adjusting for EF-Mean and PTSD symptoms, the mTBI group showed significantly higher EF-IIV than MCs. Groups did not differ on EF-Mean after adjusting for PTSD symptoms. Across groups, PTSD symptoms significantly negatively correlated with EF-Mean, but not with EF-IIV. EF-IIV significantly negatively correlated with GFA in multiple white matter pathways connecting frontal and more posterior regions. Conclusions: Veterans with mTBI demonstrated significantly greater IIV across EF tests compared to MCs, even after adjusting for mean group differences on those measures as well as PTSD severity. Findings suggest that, in contrast to analyses that explore effects of mean performance across tests, discrepancy analyses may capture unique variance in neuropsychological performance and more sensitively capture cognitive disruption in Veterans with mTBI histories. Importantly, findings show that EF-IIV is negatively associated with the microstructure of white matter pathways interconnecting cortical regions that mediate executive function and attentional processes.


Brain ◽  
2014 ◽  
Vol 137 (7) ◽  
pp. 1876-1882 ◽  
Author(s):  
Tero Ilvesmäki ◽  
Teemu M. Luoto ◽  
Ullamari Hakulinen ◽  
Antti Brander ◽  
Pertti Ryymin ◽  
...  

Brain Injury ◽  
2018 ◽  
Vol 32 (10) ◽  
pp. 1255-1264 ◽  
Author(s):  
Sarah M. Jurick ◽  
Samantha N. Hoffman ◽  
Scott Sorg ◽  
Amber V. Keller ◽  
Nicole D. Evangelista ◽  
...  

2019 ◽  
Vol 13 ◽  
pp. 117906951985862 ◽  
Author(s):  
Wouter S Hoogenboom ◽  
Todd G Rubin ◽  
Kenny Ye ◽  
Min-Hui Cui ◽  
Kelsey C Branch ◽  
...  

Mild traumatic brain injury (mTBI), also known as concussion, is a serious public health challenge. Although most patients recover, a substantial minority suffers chronic disability. The mechanisms underlying mTBI-related detrimental effects remain poorly understood. Although animal models contribute valuable preclinical information and improve our understanding of the underlying mechanisms following mTBI, only few studies have used diffusion tensor imaging (DTI) to study the evolution of axonal injury following mTBI in rodents. It is known that DTI shows changes after human concussion and the role of delineating imaging findings in animals is therefore to facilitate understanding of related mechanisms. In this work, we used a rodent model of mTBI to investigate longitudinal indices of axonal injury. We present the results of 45 animals that received magnetic resonance imaging (MRI) at multiple time points over a 2-week period following concussive or sham injury yielding 109 serial observations. Overall, the evolution of DTI metrics following concussive or sham injury differed by group. Diffusion tensor imaging changes within the white matter were most noticeable 1 week following injury and returned to baseline values after 2 weeks. More specifically, we observed increased fractional anisotropy in combination with decreased radial diffusivity and mean diffusivity, in the absence of changes in axial diffusivity, within the white matter of the genu corpus callosum at 1 week post-injury. Our study shows that DTI can detect microstructural white matter changes in the absence of gross abnormalities as indicated by visual screening of anatomical MRI and hematoxylin and eosin (H&E)-stained sections in a clinically relevant animal model of mTBI. Whereas additional histopathologic characterization is required to better understand the neurobiological correlates of DTI measures, our findings highlight the evolving nature of the brain’s response to injury following concussion.


2014 ◽  
Vol 34 (4) ◽  
pp. 715-723 ◽  
Author(s):  
Virginia Donovan ◽  
Claudia Kim ◽  
Ariana K Anugerah ◽  
Jacqueline S Coats ◽  
Udochuwku Oyoyo ◽  
...  

Mild traumatic brain injury (mTBI) is an increasing public health concern as repetitive injuries can exacerbate existing neuropathology and result in increased neurologic deficits. In contrast to other models of repeated mTBI (rmTBI), our study focused on long-term white-matter abnormalities after bilateral mTBIs induced 7 days apart. A controlled cortical impact (CCI) was used to induce an initial mTBI to the right cortex of Single and rmTBI Sprague Dawley rats, followed by a second injury to the left cortex of rmTBI animals. Shams received only a craniectomy. Ex vivo diffusion tensor imaging (DTI), transmission electron microscopy (TEM), and histology were performed on the anterior corpus callosum at 60 days after injury. The rmTBI animals showed a significant bilateral increase in radial diffusivity (myelin), while only modest changes in axial diffusivity (axonal) were seen between the groups. Further, the rmTBI group showed an increased g-ratio and axon caliber in addition to myelin sheath abnormalities using TEM. Our DTI results indicate ongoing myelin changes, while the TEM data show continuing axonal changes at 60 days after rmTBI. These data suggest that bilateral rmTBI induced 7 days apart leads to progressive alterations in white matter that are not observed after a single mTBI.


2010 ◽  
Vol 23 (2) ◽  
pp. 224-227 ◽  
Author(s):  
Ragini Yallampalli ◽  
Elisabeth A. Wilde ◽  
Erin D. Bigler ◽  
Stephen R. McCauley ◽  
Gerri Hanten ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2070
Author(s):  
Sung-Ho Jang ◽  
Chang-Hoon Bae ◽  
Jae-Woon Kim ◽  
Hyeok-Gyu Kwon

Some studies have reported that a core vestibular projection (CVP) injury is associated with dizziness following a brain injury using diffusion tensor tractography (DTT). On the other hand, there has been no DTT study on dizziness caused by a CVP injury in patients with mild traumatic brain injury (TBI). In this study, DTT was used to examine the relationship between dizziness and CVP injury in patients with mild TBI. Forty-three patients with mild TBI and twenty-nine normal subjects were recruited. The patients were classified into two groups based on the dizziness score: group A, patients with a dizziness score less than 2 on the sub-item score for dizziness in the Rivermead Post-concussion Symptoms Questionnaire; group B, patients with a dizziness score above 2. The tract volume (TV) in group B was significantly lower than group A and the control group (p < 0.05). By contrast, the TV in group A was similar to the control group (p > 0.05). Regarding the correlation, the dizziness score of all patients showed a strong negative correlation with the TV of the CVP (r = −0.711, p < 0.05). DTT revealed the CVP injury in patients with dizziness after mild TBI. In addition, the severity of dizziness of these patients was closely related to the injury severity of the CVP.


2020 ◽  
Vol 35 (6) ◽  
pp. 783-783
Author(s):  
J Trotta ◽  
L Hungerford ◽  
S Agtarap ◽  
M Ettenhofer

Abstract Objective The study investigated the relationship between levels of symptom reporting and performance validity testing (PVT) in Active Duty Service Members (ADSM) with mild traumatic brain injury (mTBI). Method A total of 70 ADSM with a history of mTBI completed the Neurobehavioral Symptom Inventory (NSI); the PTSD Check List for DSM-5 (PCL-5), Headache Impact Test (HIT-6), Patient Health Questionnaire (PHQ8), Pittsburgh Sleep Quality Index (PSQI), and Alcohol Use Disorders Identification Test (AUDIT-C); and a comprehensive neuropsychological evaluation including the Test of Memory Malingering (TOMM). A multiple regression was conducted with all self-reported symptom questionnaires as predictors of PVT performance. To further explore this relationship, the four NSI subscales (affective, cognitive, vestibular, somatosensory) plus the mild Brain Injury Atypical Symptoms (mBIAS) subscore were entered into a separate regression analysis. Results The NSI was the only significant predictor of TOMM Trial 1 performance (TOMMT1; R2 = .272, F(6,58) = 3.606, p &lt; .01; β = −.615, p &gt; .01). When the four NSI subscales (affective, cognitive, vestibular, somatosensory) plus the mild Brain Injury Atypical Symptoms (mBIAS) subscore were entered into a separate regression analysis, only the somatosensory subscore emerged as a significant predictor of TOMMT1 (R2 = .208, F(5,63) = 3.317, p &lt; .05; β = −.384, p &gt; .05). Conclusions Results suggest that performance validity measures in ADSM with mTBI may at times be more strongly influenced by patients’ health concerns than by overt dissimulation.


Sign in / Sign up

Export Citation Format

Share Document