scholarly journals Characterization of Mobile Work Zone Safety in Missouri

2020 ◽  
Vol 14 (1) ◽  
pp. 67-77
Author(s):  
Carlos Sun ◽  
Huang Feng ◽  
Yaw Adu-Gyamfi

Work zones often deviate from normal conditions in terms of geometrics (e.g. lane closure, narrow lanes), striping/markings, signs, and traffic. A Mobile Work Zone (MWZ) is a special category of a work zone where the location of the work zone keeps changing, often rapidly. Despite MWZ safety being of great interest to transportation agencies, they have not studied it formally. This paper presents an examination of MWZs and collisions involving Truck-Mounted Attenuators (TMAs). This examination utilized data fusion of three major databases from Missouri: crash reports, department of transportation claim reports, and MWZ schedules. The fused dataset involved 139 crashes from 2012-2017. The areas of interest included initial impact location, contributing factors, third-party versus employee fault, vehicle type, work zone activity, seasonality, speed limit, time of day, collision lane, and work train configuration. The majority of the crashes were the fault of third parties (>80%) and distraction/inattentiveness was the largest contributory factor (66%). Public outreach and education should emphasize on the difficulty in providing early warnings of MWZs. There is a significant percentage of crashes involving lane changing (39.2%) and even collision of the middle TMA truck (21.8%). Thus, it is important for the public to understand that an entire work train is an integral unit. Higher speed limit dominated MWZ crashes (>75%), even though they only represented 3.6% of the MWZs scheduled. The results of this study on MWZs provide some foundation for other researchers to pursue statistical modeling, assuming that a larger database of MWZ crashes could be developed.

Author(s):  
Mustafa Suhail Almallah ◽  
Qinaat Hussain ◽  
Wael K. M Alhajyaseen ◽  
Tom Brijs

Work zones are road sections where road construction or maintenance activities take place. These work zones usually have different alignment and furniture than the original road and thus temporary lower speeds are adopted at these locations. However, drivers usually face difficulty in adopting the new speed limit and maneuvering safely due to the change in alignment. Therefore, work zones are commonly considered as hazardous locations with higher crash rates and severities as reported in the literature. This study aims to investigate the effectiveness of a variable message signs (VMSs) based system for work zone advance warning area. The proposed system aims at enhancing driver adaptation of the reduced speed limit, encourage early lane changing maneuvers and improve the cooperative driving behavior in the pre-work zone road section. The study was conducted using a driving simulator at the College of Engineering of Qatar University. Seventy volunteers holding a valid Qatari passenger car driving license participated in this study. In the simulator experiment, we have two scenarios (control and treatment). The control scenario was designed based on the Qatar Work Zone Traffic Management Guide (QWZTMG), where the length of the advance warning area is 1000 m. Meanwhile, the treatment scenario contains six newly designed variable message signs where two of them were animation-based. The VMSs were placed at the same locations of the static signs in the control scenario. Both scenarios were tested for two situations. In the first situation, the participants were asked to drive on the left lane while in the second situation, they were instructed to drive on the second lane. The study results showed that the proposed system was effective in motivating drivers to reduce their traveling speed in advance. Compared to the control scenario, drivers’ mean speed was significantly 6.3 and 11.1 kph lower in the VMS scenario in the first and second situations, respectively. Furthermore, the VMS scenario encouraged early lane changing maneuvers. In the VMS scenario, drivers changed their lanes in advance by 150 m compared to the control scenario. In addition, the proposed system was effective in motivating drivers to keep larger headways with the frontal merging vehicle. Taking into account the results from this study, we recommend the proposed VMS based system as a potentially effective treatment to improve traffic safety at work zones.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261383
Author(s):  
Glenna F. Nightingale ◽  
Andrew James Williams ◽  
Ruth F. Hunter ◽  
James Woodcock ◽  
Kieran Turner ◽  
...  

Objectives Traffic speed is important to public health as it is a major contributory factor to collision risk and casualty severity. 20mph (32km/h) speed limit interventions are an increasingly common approach to address this transport and health challenge, but a more developed evidence base is needed to understand their effects. This study describes the changes in traffic speed and traffic volume in the City of Edinburgh, pre- and 12 months post-implementation of phased city-wide 20mph speed limits from 2016–2018. Methods The City of Edinburgh Council collected speed and volume data across one full week (24 hours a day) pre- and post-20mph speed limits for 66 streets. The pre- and post-speed limit intervention data were compared using measures of central tendency, dispersion, and basic t-tests. The changes were assessed at different aggregations and evaluated for statistical significance (alpha = 0.05). A mixed effects model was used to model speed reduction, in the presence of key variables such as baseline traffic speed and time of day. Results City-wide, a statistically significant reduction in mean speed of 1.34mph (95% CI 0.95 to 1.72) was observed at 12 months post-implementation, representing a 5.7% reduction. Reductions in speed were observed throughout the day and across the week, and larger reductions in speed were observed on roads with higher initial speeds. Mean 7-day volume of traffic was found to be lower by 86 vehicles (95% CI: -112 to 286) representing a reduction of 2.4% across the city of Edinburgh (p = 0.39) but with the direction of effect uncertain. Conclusions The implementation of the city-wide 20mph speed limit intervention was associated with meaningful reductions in traffic speeds but not volume. The reduction observed in road traffic speed may act as a mechanism to lessen the frequency and severity of collisions and casualties, increase road safety, and improve liveability.


Author(s):  
Denis Elia Monyo ◽  
Henrick J. Haule ◽  
Angela E. Kitali ◽  
Thobias Sando

Older drivers are prone to driving errors that can lead to crashes. The risk of older drivers making errors increases in locations with complex roadway features and higher traffic conflicts. Interchanges are freeway locations with more driving challenges than other basic segments. Because of the growing population of older drivers, it is vital to understand driving errors that can lead to crashes on interchanges. This knowledge can assist in developing countermeasures that will ensure safety for all road users when navigating through interchanges. The goal of this study was to determine driver, environmental, roadway, and traffic characteristics that influence older drivers’ errors resulting in crashes along interchanges. The analysis was based on three years (2016–2018) of crash data from Florida. A two-step approach involving a latent class clustering analysis and the penalized logistic regression was used to investigate factors that influence driving errors made by older drivers on interchanges. This approach accounted for heterogeneity that exists in the crash data and enhanced the identification of contributing factors. The results revealed patterns that are not obvious without a two-step approach, including variables that were not significant in all crashes, but were significant in specific clusters. These factors included driver gender and interchange type. Results also showed that all other factors, including distracted driving, lighting condition, area type, speed limit, time of day, and horizontal alignment, were significant in all crashes and few specific clusters.


Author(s):  
Ana Maria Elias ◽  
Zohar J. Herbsman

Construction sites or work zones create serious disruptions in the normal flow of traffic, resulting in major inconveniences for the traveling public. Furthermore, these work zones create safety hazards that require special consideration. Current legislation and programs, at both state and national levels, emphasize the need for a better understanding of work zone problems to address work zone safety. This reality—coupled with the temporary closure of more miles of highway every year for rehabilitation and maintenance—makes the analysis of safety at construction sites a serious matter. A summary of a comprehensive study associated with the development of a new practical approach to address highway safety in construction zones is presented. Because empirical models require sample sizes that are not attainable due to the intrinsic scarcity of construction zone accident data, the problem was studied from the point of view of risk analysis. Monte Carlo simulations were used to develop risk factors. These factors are meant to be included in the calculations of additional user costs for work zones, or simply applied as risk measurements, to optimize the length and duration of closures for highway reconstruction and rehabilitation projects. In this way, it will be possible to assess the danger of work zones to the traveling public and minimize adverse effect of work zones on highway safety.


2003 ◽  
Author(s):  
Christopher Huebschman ◽  
Camilo Garcia ◽  
Darcy Bullock

Sign in / Sign up

Export Citation Format

Share Document