Smart Gn-Keto Nanohybrid Embedded Topical System for Effective Management of Dermatophytosis

2019 ◽  
Vol 9 (1) ◽  
pp. 21-28
Author(s):  
Nisha Sharma ◽  
Shashikiran Misra

Background and Objectives: Dermatophytosis (topical fungal infection) is the 4th common disease in the last decade, affecting 20-25% world’s population. Patients of AIDS, cancer, old age senescence, diabetes, cystic fibrosis become more vulnerable to dermatophytosis. The conventional topical dosage proves effective as prophylactic in preliminary stage. In the advanced stage, the therapeutics interacts with healthy tissues before reaching the pathogen site, showing undesirable effects, thus resulting in pitiable patient compliance. The youngest carbon nano-trope “Graphene” is recently used to manipulate bioactive agents for therapeutic purposes. Here, we explore graphene via smart engineering by virtue of high surface area and high payload for therapeutics and developed graphene–ketoconazole nanohybrid (Gn-keto) for potent efficacy towards dermatophytes in a controlled manner. </P><P> Methods: Polymethacrylate derivative Eudragit (ERL100 and ERS 100) microspheres embedded with keto and Gn-keto nanohybrid were formulated and characterized through FTIR, TGA, and SEM. In vitro drug release and antifungal activity of formulated Gn-keto microspheres were assessed for controlled release and better efficacy against selected dermatophytes. </P><P> Results: Presence of numerous pores within the surface of ERL100 microspheres advocated enhanced solubility and diffusion at the site of action. Controlled diffusion across the dialysis membrane was observed with ERS100 microspheres owing to the nonporous surface and poor permeability. Antifungal activity against T. rubrum and M. canis using microdilution method focused on a preeminent activity (99.785 % growth inhibition) of developed nanohybrid loaded microspheres as compared to 80.876% of keto loaded microspheres for T. rubrum. The culture of M. canis was found to be less susceptible to formulated microspheres. Conclusion: Synergistic antifungal activity was achieved by nanohybrid Gn-Keto loaded microspheres against selected topical fungal infections suggesting a vital role of graphene towards fungi.

2021 ◽  
Vol 1 (4) ◽  
pp. 135-152
Author(s):  
Thiago Henrique Lemes ◽  
Guilherme Silva Torrezan ◽  
Carlos Roberto Polaquini ◽  
Luis Octavio Regasini ◽  
Bianca Gottardo de Almeida ◽  
...  

Onychomycoses are nail infections caused primarily by dermatophytes fungi, yeasts, and other filamentous fungi, characterized by persistent infections, prolonged therapy, and high recurrence rates. In clinical practice, some of these occurrences present two or more microorganisms, and the interactions among them can change the chemical environment mediated by small diffusible molecules, producing a competitive niche. The aim of this study was to evaluate the antifungal activity of individual extracts of pure cultures of Candida albicans and C. parapsilosis against dermatophytes. To obtain the fungal extracts, cultures were filtered through a 0.2 μm membrane and submitted to liquid-liquid extraction using ethyl acetate. The Minimal Inhibitory Concentration (MIC) of each extract was evaluated by broth microdilution method and checkerboard assay with fluconazole against clinical isolates of Trichophyton rubrum and T. mentagrophytes. The invertebrate model of Galleria mellonella was used to evaluate the toxicity of the extracts. As results, the extracts of C. albicans and C. parapsilosis showed antifungal activity with MICs between 31,2 – 2000 μg/mL. In association with fluconazole, synergistic effect was detected for all combinations. The extracts presented low toxicity in G. mellonella. In the future, isolation and identification of the extract compounds may allow new therapeutic approaches in the control of fungal infections.


2019 ◽  
Vol 16 (31) ◽  
pp. 12-17
Author(s):  
Gustavo Lima SOARES ◽  
Brenda Lavínia Calixto dos SANTOS ◽  
Brenna Ravena Araújo LUZ ◽  
Wylly Araújo de OLIVEIRA

Aspergillus species are a cause of a high number of fungal infections of difficult treatment, presenting an expressive number of deaths due to the complications in the severe cases of infection. The objective was to evaluate the antifungal action of carvacrol against Aspergillus species, as well as to evaluate the interactions when associated with amphotericin B or ketoconazole. The antifungal activity of carvacrol was evaluated by the broth microdilution method. The combinations of the substances were performed by the checkerboard methodology, to determine the Index of Fractional Inhibitory Concentration. Carvacrol showed antifungal activity against all Aspergillus strains used in the trials. In combinations of substances, only a combination of carvacrol and amphotericin B presented satisfactory results. Combinations of carvacrol and ketoconazole have not shown good. It is concluded that carvacrol is a good candidate for the antifungal drug because of its good activity against Aspergillus demonstrated in the present study, as well as in other studies in the literature. Their combination in vitro with amphotericin B or ketoconazole did not present any advantages over the use of antifungal drugs alone.


Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 413
Author(s):  
Eva G. Barreales ◽  
Ángel Rumbero ◽  
Tamara D. Payero ◽  
Antonio de Pedro ◽  
Ester Jambrina ◽  
...  

The rise in the number of immunocompromised patients has led to an increased incidence of fungal infections, with high rates of morbidity and mortality. Furthermore, misuse of antifungals has boosted the number of resistant strains to these agents; thus, there is urgent need for new drugs against these infections. Here, the in vitro antifungal activity of filipin III metabolic intermediates has been characterized against a battery of opportunistic pathogenic fungi—Candida albicans, Candida glabrata, Candida krusei, Cryptococcus neoformans, Trichosporon cutaneum, Trichosporon asahii, Aspergillus nidulans, Aspergillus niger, and Aspergillus fumigatus—using the Clinical and Laboratory Standards Institute broth microdilution method. Structural characterization of these compounds was undertaken by mass spectrometry (MS) and nuclear magnetic resonance (NMR) following HPLC purification. Complete NMR assignments were obtained for the first time for filipins I and II. In vitro haemolytic assays revealed that the haemolytic action of these compounds relies largely on the presence of a hydroxyl function at C26, since derivatives lacking such moiety show remarkably reduced activity. Two of these derivatives, 1′-hydroxyfilipin I and filipin I, show decreased toxicity towards cholesterol-containing membranes while retaining potent antifungal activity, and could constitute excellent leads for the development of efficient pharmaceuticals, particularly against Cryptococcosis.


Author(s):  
Soumitra Satapathi ◽  
Rutusmita Mishra ◽  
Manisha Chatterjee ◽  
Partha Roy ◽  
Somesh Mohapatra

Nano-materials based drug delivery modalities to specific organs and tissues has become one of the critical endeavors in pharmaceutical research. Recently, two-dimensional graphene has elicited considerable research interest because of its potential application in drug delivery systems. Here we report, the drug delivery applications of PEGylated nano-graphene oxide (nGO-PEG), complexed with a multiphoton active and anti-cancerous diarylheptanoid drug curcumin. Specifically, graphene-derivatives were used as nanovectors for the delivery of the hydrophobic anticancer drug curcumin due to its high surface area and easy surface functionalization. nGO was synthesized by modified Hummer’s method and confirmed by XRD analysis. The formation of nGO, nGO-PEG and nGO-PEG-Curcumin complex were monitored through UV-vis, IR spectroscopy. MTT assay and AO/EB staining found that nGO-PEG-Curcumin complex afforded highly potent cancer cell killing in vitro with a human breast cancer cell line MCF7.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4087
Author(s):  
Marta Szekalska ◽  
Aleksandra Citkowska ◽  
Magdalena Wróblewska ◽  
Katarzyna Winnicka

Fungal infections and invasive mycoses, despite the continuous medicine progress, are an important globally therapeutic problem. Multicompartment dosage formulations (e.g., microparticles) ensure a short drug diffusion way and high surface area of drug release, which as a consequence can provide improvement of therapeutic efficiency compared to the traditional drug dosage forms. As fucoidan is promising component with wide biological activity per se, the aim of this study was to prepare fucospheres (fucoidan microparticles) and fucoidan/gelatin microparticles with posaconazole using the one-step spray-drying technique. Pharmaceutical properties of designed fucospheres and the impact of the gelatin addition on their characteristics were evaluated. An important stage of this research was in vitro evaluation of antifungal activity of developed microparticles using different Candida species. It was observed that gelatin presence in microparticles significantly improved swelling capacity and mucoadhesiveness, and provided a sustained POS release. Furthermore, it was shown that gelatin addition enhanced antifungal activity of microparticles against tested Candida spp. strains. Microparticles formulation GF6, prepared by the spray drying of 20% fucoidan, 5% gelatin and 10% Posaconazole, were characterized by optimal mucoadhesive properties, high drug loading and the most sustained drug release (after 8 h 65.34 ± 4.10% and 33.81 ± 5.58% of posaconazole was dissolved in simulated vaginal fluid pH 4.2 or 0.1 M HCl pH 1.2, respectively).


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 426
Author(s):  
Vaibhav Kumar Maurya ◽  
Amita Shakya ◽  
Manjeet Aggarwal ◽  
Kodiveri Muthukaliannan Gothandam ◽  
Torsten Bohn ◽  
...  

Nanotechnology has opened new opportunities for delivering bioactive agents. Their physiochemical characteristics, i.e., small size, high surface area, unique composition, biocompatibility and biodegradability, make these nanomaterials an attractive tool for β-carotene delivery. Delivering β-carotene through nanoparticles does not only improve its bioavailability/bioaccumulation in target tissues, but also lessens its sensitivity against environmental factors during processing. Regardless of these benefits, nanocarriers have some limitations, such as variations in sensory quality, modification of the food matrix, increasing costs, as well as limited consumer acceptance and regulatory challenges. This research area has rapidly evolved, with a plethora of innovative nanoengineered materials now being in use, including micelles, nano/microemulsions, liposomes, niosomes, solidlipid nanoparticles, nanostructured lipids and nanostructured carriers. These nanodelivery systems make conventional delivery systems appear archaic and promise better solubilization, protection during processing, improved shelf-life, higher bioavailability as well as controlled and targeted release. This review provides information on the state of knowledge on β-carotene nanodelivery systems adopted for developing functional foods, depicting their classifications, compositions, preparation methods, challenges, release and absorption of β-carotene in the gastrointestinal tract (GIT) and possible risks and future prospects.


Antibiotics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 894
Author(s):  
Vanessa Raquel Greatti ◽  
Fernando Oda ◽  
Rodrigo Sorrechia ◽  
Bárbara Regina Kapp ◽  
Carolina Manzato Seraphim ◽  
...  

Dermatophyte fungal infections are difficult to treat because they need long-term treatments. 4-Nerolidylcatechol (4-NC) is a compound found in Piper umbellatum that has been reported to demonstrate significant antifungal activity, but is easily oxidizable. Due to this characteristic, the incorporation in nanostructured systems represents a strategy to guarantee the compound’s stability compared to the isolated form and the possibility of improving antifungal activity. The objective of this study was to incorporate 4-NC into polymeric nanoparticles to evaluate, in vitro and in vivo, the growth inhibition of Microsporum canis. 4-NC was isolated from fresh leaves of P. umbellatum, and polymer nanoparticles of polycaprolactone were developed by nanoprecipitation using a 1:5 weight ratio (drug:polymer). Nanoparticles exhibited excellent encapsulation efficiency, and the antifungal activity was observed in nanoparticles with 4-NC incorporated. Polymeric nanoparticles can be a strategy employed for decreased cytotoxicity, increasing the stability and solubility of substances, as well as improving the efficacy of 4-NC.


2009 ◽  
Vol 58 (8) ◽  
pp. 1074-1079 ◽  
Author(s):  
Na Guo ◽  
Jingbo Liu ◽  
Xiuping Wu ◽  
Xingming Bi ◽  
Rizeng Meng ◽  
...  

Thymol (THY) was found to have in vitro antifungal activity against 24 fluconazole (FLC)-resistant and 12 FLC-susceptible clinical isolates of Candida albicans, standard strain ATCC 10231 and one experimentally induced FLC-resistant C. albicans S-1. In addition, synergism was observed for clinical isolates of C. albicans with combinations of THY–FLC and THY–amphotericin B (AMB) evaluated by the chequerboard microdilution method. The interaction intensity was determined by spectrophotometry for the chequerboard assay, and the nature of the interactions was assessed using two non-parametric approaches [fractional inhibitory concentration index (FICI) and ΔE models]. The interaction between THY–FLC or THY–AMB in FLC-resistant and -susceptible strains of C. albicans showed a high percentage of synergism by the FICI method and the ΔE method. The ΔE model gave results consistent with FICI, and no antagonistic action was observed in the strains tested.


2019 ◽  
Vol 58 (5) ◽  
pp. 703-706 ◽  
Author(s):  
Jun Maeda ◽  
Hiroyasu Koga ◽  
Kou Yuasa ◽  
Daisuke Neki ◽  
Yasuko Nanjoh ◽  
...  

Abstract In vitro antifungal activity of luliconazole against nondermatophytic moulds causing superficial infections was compared with that of five classes of 12 topical and systemic drugs. The minimum inhibitory concentration (MIC) of the drugs against the genera of Neoscytalidium, Fusarium, Aspergillus, Scedosporium, and Alternaria was measured via modified microdilution method. In results, the nondermatophytic moulds were found to be less susceptible to drugs to which Neoscytalidium spp. and Fusarium spp. were typically drug resistant. However, luliconazole was effective against all the genera tested, including afore-mentioned two species, and had the lowest MICs among the drugs tested.


2018 ◽  
Vol 5 (3) ◽  
pp. 171814 ◽  
Author(s):  
Chang Shu ◽  
Tengfei Li ◽  
Wen Yang ◽  
Duo Li ◽  
Shunli Ji ◽  
...  

The present work is focused on the design and development of novel amphotericin B (AmB)-conjugated biocompatible and biodegradable polypeptide hydrogels to improve the antifungal activity. Using three kinds of promoting self-assembly groups (2-naphthalene acetic acid (Nap), naproxen (Npx) and dexamethasone (Dex)) and polypeptide sequence (Phe-Phe-Asp-Lys-Tyr, FFDKY), we successfully synthesized the Nap-FFDK(AmB)Y gels, Npx-FFDK(AmB)Y gels and Dex-FFDK(AmB)Y gels. The AmB-conjugated hydrogelators are highly soluble in different aqueous solutions. The cryo-transmission electron microscopy and scanning electron microscopy micrographs of hydrogels afford nanofibres with a width of 20–50 nm. Powder X-ray diffraction analyses demonstrate that the crystalline structures of the AmB and Dex are changed into amorphous structures after the formation of hydrogels. Circular dichroism spectra of the solution of blank carriers and the corresponding drug deliveries further help elucidate the molecular arrangement in gel phase, indicating the existence of turn features. The in vitro drug releases suggest that the AmB-conjugated hydrogels are suitable as drug-controlled release vehicles for hydrophobic drugs. The antifungal effect of AmB-conjugated hydrogels significantly exhibits the antifungal activity against Candida albicans . The results of the present study indicated that the AmB-conjugated hydrogels are suitable carriers for poorly water soluble drugs and for enhancement of therapeutic efficacy of antifungal drugs.


Sign in / Sign up

Export Citation Format

Share Document