Formulation and In vitro Evaluation of Gastroretentive Floating Bioadhesive Tablets of Nizatidine using Factorial Design

2019 ◽  
Vol 9 (3) ◽  
pp. 234-239
Author(s):  
Vidya Sabale ◽  
Hardikkumar Chaudhari ◽  
Prafulla Sabale

Background: The aim of the present study was to formulate and evaluate floating bioadhesive tablets of Nizatidine which is a competitive, reversible H2-receptor antagonist. Floatingbioadhesive drug delivery system exhibiting a unique combination of floatation and bioadhesion to prolong gastric residence time was prepared. Methods: Polymers used were Hydroxy Propyl Methyl Cellulose (HPMC) K15M as matrix forming water swellable release retarding polymer and carbopol 934P as bioadhesive polymer. The gas generating agents used were sodium bicarbonate and citric acid. The prepared floating bioadhesive tablets of Nizatidine were optimized by 32 factorial design to study independent variable X1 (concentration of CP 934P) and X2 (concentration of HPMC K15M) and dependent variables as floating lag time, cumulative percentage drug release at 12h and swelling index. Tablets were evaluated for various parameters such as hardness, friability, drug content, swelling behavior, floating lag time, bioadhesive strength, drug release profile and stability. Results: All the formulations passed the test for weight variation, hardness, content uniformity and showed acceptable results with respect to drug content (97.93 ± 0.57) and % friability. The tablet containing 25% HPMC K15M and 13.75 % Carbopol 934P was selected as optimized formulation which showed the floating lag time of 74.34±2.08 seconds, drug release of 97.03±0.55% at 12 h (R12h,%), S.I as 79.24±0.87 at 9 h and bioadhesive strength as 10.0023±21.47 g. Stability of the formulation was proved using stability study. Conclusion: The formulated tablets have a potential for controlled release of the drug through floatation and bioadhesion.

Author(s):  
C.C. Patil ◽  
J. Vekatesh ◽  
S. R Karajgi ◽  
Vijapure Vitthal ◽  
Ashwini G. ◽  
...  

The aim of this project was to develop sustained release matrix tablets of Repaglinide. Sustained release matrix tablets of Repaglinide were prepared by the wet granulation method using polymers like Hydroxy propyl methyl cellulose, Microcrystalline cellulose, Eudragit RS-100 in different ratios. The matrix tablets of Repaglinide were evaluated for hardness, weight variation, friability, drug content uniformity, and in-vitro drug release. In order to determine the drug release mechanisms and kinetics, the data was subjected to zero order, first order, and higuchi and peppas diffusion model. Twelve batches of sustained release matrix tablets of Repaglinide were developed. Among these formulations F4, F8 and F12 formulation showed satisfactory physicochemical properties and drug content uniformity and sustained release of drug for 12 hours with maximum release of 86.95%, 84.91% and 84.91%. The optimized formulations were characterized for Differential scanning calorimetric analysis; Fourier transforms infrared spectroscopy and scanning electron microscopic studies. IR spectroscopic studies indicated that there were no drug-excipient interactions. The prepared sustained release matrix tablets of Repaglinide were successfully developed and evaluated.


Author(s):  
Tiwari R. ◽  
Tiwari G. ◽  
Wal P. ◽  
Wal A. ◽  
Maurya P.

In present study, matrix tablets of Omeprazole (OPZ) were formulated by wet granulation technique using a combination of hydroxyl propyl methyl cellulose (HPMC K15M) and ethyl cellulose (EC) in varying ratios and the effect of polymer ratio as well as their concentration on drug release profile was investigated. Response surface methodology (RSM) was conducted to optimize matrix tablets. Compressed tablets were evaluated for hardness, friability, weight variation, drug content and in vitro dissolution studies. The dissolution study was performed in pH1.2 for the first 2 h and in phosphate buffer (pH 7.4) for another 5 h. The optimized formulation was compared with other formulations using similarity (ƒ2) and dissimilarity factor (ƒ1) test. The results of RSM indicated that both X1 (the blending ratio of HPMC K15M K15M and Carbopol 934P 934P) and X2 (polymer blend concentration)have significant effect on in-vitro drug release profile. Hardness, friability, weight variation and drug content were found to be in desired range. Among different formulations, matrix tablets prepared by HPMC K15M and Carbopol 934P 934P (7:3) with 15% polymer blend concentration displayed 98.85% OPZ release in 7 hr. and release kinetic was higuchi (r 2= 0.9884). Similarity (f2) and dissimilarity (f1) factors demonstrated that the in vitro profiles were not similar. Finally, it was concluded that release rate of OPZ decreased proportionally with increasing polymer ratio (HPMC K15M: Carbopol 934P 934P) and decreasing polymer blend concentration.


2017 ◽  
Vol 16 (10) ◽  
pp. 2325-2330
Author(s):  
Qiong Jin ◽  
Wei Chen ◽  
Wan Wu

Purpose: To develop mucoadhesive tablets containing miconazole (MCZ) for the treatment of oropharyngeal candidiasis, using chitosan and hydroxypropyl methylcellulose (HPMC) as mucoadhesive polymers.Methods: Mucoadhesive tablets were formulated and optimized using a 23 factorial design and direct compression method. The independent variables were compression force and concentrations of chitosan and HPMC, while mucoadhesion time and in vitro drug release were dependent variables. Tablet characterization was carried out by evaluating hardness, thickness, tablet weight variation, content uniformity, friability and in vitro drug release at salivary pH (pH 6.8).Results: The tablets showed good mucoadhesion for an extended period (8 h), and their physical characteristics were within acceptable ranges. Drug release ranged from 60.5 % to 80.8 %.Conclusion: These results indicate that the mucoadhesive MCZ tablets formulated with chitosan and HPMC possess potential for the development of therapeutic preparations for management of oropharyngeal candidiasis.Keywords: Miconazole, Oropharyngeal candidiasis, Factorial design, Mucoadhesion, Chitosan, Drug release


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (07) ◽  
pp. 52-57

The aim of this research was to develop mucoadhesive buccal patches of nicergoline by using Factorial Design of Experiment, in order to provide a sustained release of drug into the systemic circulation. A 33 factorial experimental design was employed for optimization and to study the effect of formulation variables on responses R1 (% swelling index), R2 (% drug content), R3 (mucoadhesion time) and R4 (mucoadhesion strength). In vitro drug release study was performed on the optimized formulations. All the prepared formulations had good mechanical strength, mucoadhesion strength, neutral surface pH and drug content up to 98.17%. In vitro drug release study revealed that F-5 formulation showed promising sustained drug release profile (98.21%) for over 8 h and could be a potential substitute for marketed conventional formulations. The developed formulation (F5) was found to be optimized with considerably good stability and extended drug release profile.


Author(s):  
Pranali Shivaji Salunkhe

ABSTRACTGastroretentive floating drug delivery system is utilised to target drug release in the stomach or to the upper part of intestine. Lansoprazole is proton pump inhibitor intended for oral administration used as antiulcer agent. The present investigation involved formulation and evaluation of Gastroretentive floating tablets of Lansoprazole for prolongation of gastric residence time with a view to deliver the drug at sustained and controlled manner in gastrointestinal tract. The tablets of Lansoprazole were prepared by direct compression method using gas generating agent and different polymer combinations (HPMCK4M, HPMC K100M, Psyllium husk) . The prepared tablets of Lansoprazole were evaluated for hardness, thickness, friability, weight variation, drug content uniformity, buoyancy lag time, total floating time, swelling index, in-vitro dissolution study. The varying concentration of gas generating agent and polymers were found to affect on in-vitro drug release, floating lag time and swelling index. In vitro drug release of floating Gastroretentive tablet of Lansoprazole shown that the formulation F2 was found to be the best formulation as it releases 97.9% Lansoprazole in a controlled manner for extended period of time (upto 12 hrs.)Keywords: Lansoprazole, Gastroretentive, floating tablet, total floating time.


2021 ◽  
Vol 11 (2) ◽  
pp. 31-37
Author(s):  
Mehak Siddiqui ◽  
L. K. Omray ◽  
Pushpendra Soni

The overall objective of the present work was to develop an oral sustained-release (SR) Metformin tablet that is prepared by the direct compression method by using hydrophilic hydroxyl propyl methyl cellulose (HPMC) and Guar gum polymer alone as well as in combination at different concentrations. Metformin is a biguanide that has a relatively short plasma half-life. It has low absolute bioavailability. All the properties were evaluated for thickness, weight variation, hardness and drug content uniformity and in vitro drug release. The mean dissolution time is used to characterize the drug release rate from a dosage form that indicates the drug release-retarding efficiency of the polymer. The hydrophilic matrix of HPMC alone could not control the Metformin release effectively for 12 h but when combined with Guar gum, it could slow down the release of drug and, thus, can be successfully employed for formulating Sustain Release matrix tablets. Keywords: Guar gum, hydroxylpropylmethylcellulose, matrix tablets, release kinetics,


Author(s):  
P. V. Swamy ◽  
Laeeq Farhana ◽  
S. B. Shirsand ◽  
Md.Younus Ali ◽  
Ashokgoud Patil

Carvedilol (non-cardio selective b-blocker) is an antihypertensive used in management of hypertension, angina pectoris and heart failure.  But its oral bioavailability is about 25-35% only due to significant degree of first pass metabolism.  It has gastrointestinal side effects such as diarrhea, gastric pain and irritation.  Hence, rectal suppositories of carvedilol were developed by using different water-soluble polymeric bases like gelatin and agar-agar using propylene glycol as plasticizer. The gelatin suppositories were disintegrating/dissolving type while gelatin–agar based suppositories were non-disintegrating/non-melting. All the formulations were evaluated for various physical parameters like weight variation,  drug content uniformity, liquefaction time, micro-melting range, in vitro dissolution, short-term stability and drug-excipient interaction (FTIR).  The mechanism of drug release was diffusion controlled and follows first order kinetics in majority of cases. The results suggested that when gelatin is replaced up to 25% w/w with agar, liquefaction time and drug release were not appreciably affected; higher proportions of agar exhibited incomplete and slow release.  Stability studies conducted at 25±3º C and 60±5% relative humidity for three months indicated that the formulations were stable in the drug-content and in vitro drug release rate (p<0.05).


Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 960
Author(s):  
Anna Karagianni ◽  
Leena Peltonen

In order to improve the solubility properties of BCS class II drug itraconazole, fast dissolving oral polymeric film formulations based on itraconazole nanocrystals were produced. Drug nanocrystals were manufactured by the wet pearl milling technique. In polymeric film formulations, hydroxypropyl methyl cellulose (HPMC) was used as a film forming polymer, and glycerin was used as a plasticizer. For nanocrystal suspensions and film formulations, thorough physicochemical characterization was performed, including particle sizing and size deviation, film appearance, weight variation, thickness, folding endurance, drug content uniformity, disintegration time, and dissolution profile. After milling, the nanoparticles were 369 nm in size with a PI value of 0.20. Nanoparticles were stable and after redispersion from film formulations, the particle size remained almost the same (330 nm and PI 0.16). The produced films were flexible, homogeneous, fast disintegrating, and drug release rate from both the nanosuspension and film formulations showed immediate release behavior. Based on the study, the film casting method for production of itraconazole nanocrystal based immediate release formulations is a good option for improved solubility.


2017 ◽  
Vol 9 (2) ◽  
pp. 16
Author(s):  
Zainab Ahmed Sadeq ◽  
Nawal Ayash Rajab

Objective: The objective of this research was to formulate the captopril as mucoadhesive buccal films for hypertension treatment and studying the effect of different variables on the physical and mechanical behavior of the prepared films.Methods: The bucco-adhesive patches were prepared using hydroxyl propyl methyl cellulose K4 (HPMC) as film forming a polymer with secondary polymer included carbopol 934 and eudragit RL100. The patches were prepared by a solvent casting method and evaluated for the weight variation, surface pH, mechanical properties, content, uniformity, ex-vivo mucoadhesive strength, ex-vivo permeation study and drug release study.Results: Formula F5 containing HPMC as primary polymer with carbopol 934 as secondary polymer was chosen to be the best formulation for the following parameters: surface pH6.44, tensile strength (16.06), percentage elongation at break (34.14), swelling index(18.85), mucoadhesive strength(26.2 gm) and the folding endurance was>300 with an in vitro drug release about 94.73% during 6 h.Fourier transforms infrared spectroscopy (FT-IR) and differential scanning calorimetric studies (DSC) showed no interaction between the drug and polymers.Conclusion: It can be concluded that oral mucoadhesive buccal film of captopril, an antihypertensive agent can be prepared utilizing HPMC as a film forming a polymer with carbopol as a secondary polymer which extended the drug release through the buccal mucosa for 6 h.


2020 ◽  
Vol 11 (2) ◽  
pp. 1920-1926
Author(s):  
Munagala Gayatri Ramya ◽  
Kothapalli Bannoth Chandra Sekhar

The aim of this investigation was to design and assess the gastric floating tablets of Atenolol using thermal sintering and investigate the effect of sintering on PEO polymer. Atenolol is an Antihypertensive with only 50 percent bioavailability due to poor absorption in lower GI tract. Gastro retentive Floating tablets were prepared to enhance the gastric retention time, to prolong the drug release. PEO which was selected as sintered polymer. Tablets were prepared by direct compression method .Formulated tablets were exposed to different temperatures (400C, 500C and 600C)  at various time intervals( 1h ,2h ,3h and4h) in a hot air oven .Post compression parameters were evaluated like weight variation, hardness, friability, floating lag time and total floating time. The result of the investigation indicates sintering influenced the floating time and dissolution properties. Weight variation, friability and content uniformity values were within limits. Sintering time and temperature contributes to effectiveness of polymers in extending drug release. Reduction in floating lag time and increase in total floating time as well as release of drug was delayed. All sintered formulation have no interaction was found in FTIR, DSC studies. All sintered tablets followed zero order with nonfickian diffusion mechanism. This study helps the use of thermal sintering in preparation of floating tablets.


Sign in / Sign up

Export Citation Format

Share Document