Optimization Based Sink Deployment Technique in WSN to Improve Network Performance

Author(s):  
Sonal Telang Chandel ◽  
Sanjay Sharma

Background & Objective: Currently, WSN (Wireless Sensor Networks) provides a variety of services in industrial and commercial applications. WSN consists of nodes that are used to sense the environments like humidity, temperature, pressure, sound, etc. As the use of WSN grows there are some issues like coverage, fault tolerance, a deployment problem, localization, Quality of Service, etc. which needs to be resolved. Sink deployment is a very important problem because it is not the only impact on performance, but also influence on deployment cost. In traditional WSN, a single sink is deployed in the network, which aggregates all the data. Due to this, the whole network is suffering from some serious issues like delay, congestion, network failure that reduces network performance. Methods: One solution is to deploy multiple sinks instead of a single sink. Deploying multiple sinks can improve network performance, but increases sink deployment cost. In this paper, an ISDOA (Improved Sink Deployment Optimization Algorithm) is proposed to find the optimum number of sinks and their optimum location in ROI. Simulation is carried out in Matlab simulator. The impact of sensors and sinks on various network performance parameters like throughput, network lifetime, packet delivery ratio, energy consumption and cost of the network is analyzed. Results & Conclusion: It is shown by simulation results that the number of sinks varies inversely with energy consumption of the nodes; and it is linearly proportional to the network lifetime, throughput and packet delivery ratio. Furthermore, results show that the proposed approach outperforms random deployment with 25% higher throughput, 30% better network lifetime, 15% lesser energy consumption and 21% optimized cost of the network, respectively.

Author(s):  
Anitha S, Et. al.

The efficiency of selecting the cluster head plays a major role in resolving the complexities faced in network management aiming to improve the longevity of sensors in the network. The clustering process is followed by selecting proper cluster heads with the consideration of energy conservation among participant nodes. While coming to security concept on WSN, the trust based cluster head selection is significant with the assumption of cooperation of all sensor nodes. In view of this assumption, the traditional methods could not help in defining the ideal cluster head of the network. This work proposes Voronoi Clustered Secure Contextual Cryptographic Algorithm (VC-SCCA) by combining Voronoi method for clustering process and cryptographic algorithm for secure data transmission. This is considered as two-tier architecture whereas, clustering takes place in first tier and encryption along with decryption takes place in the second tier. The proposed algorithm is compared with two state-of-art methods such as, Secured WSN (SeC‐WSN) and Taylor based Cat Salp Swarm Algorithm (Taylor C-SSA) in terms of energy consumption, Packet Delivery Ratio (PDR), network lifetime, encryption time and decryption time. As a result, the proposed VC-SCCA achieves 53.2% of energy consumption, 98.6% of packet delivery ratio, 97.5% of network lifetime, 62.8sec of encryption time and 71.2sec decryption time.


2017 ◽  
Vol 9 (3) ◽  
Author(s):  
Ana Oktaviana ◽  
Doan Perdana ◽  
Ridha Muldina Negara

The increasing needs and demands of diverse services by the users to be able to exchange and obtain information in real time, reliable, and flexible to be one of the problems faced by existing communication technology. WLAN on the IEEE 802.11 standard is one of the wireless technologies that can be the solution of the problem. It has a relatively small area of ??communication that is between 20-70 meters only, only able to serve up to 2007 stations, and has considerable energy consumption, causing some systems contained in the WLAN in IEEE 802.11 standard less work maximally. With these shortcomings, the WLAN on the IEEE 802.11 standard introduces a new task group called IEEE 802.11ah. IEEE 802.11ah is a new WLAN standard working on the 900 MHz frequency spectrum, a 1 kilometer communications coverage area, capable of serving 8192 stations with new AID hierarchies, has lower energy consumption and can increase throughput value by RAW mechanism. This study will make changes to the number of RAW slots in the IEEE 802.11ah to see how they affect the network performance. In this research it is found that the change of RAW slot number influence to network performance, in this case is throughput, average delay, packet delivery ratio and energy consumption.


2021 ◽  
Author(s):  
Jeferson Rodrigues Cotrim ◽  
João Henrique Kleinschmidt

LoRaWAN is one of the most popular LPWAN technology due to the facility to implement applications that require a low cost, low energy consumption, low data rate, and large coverage area. A LoRaWAN network is composed of end-devices that transmit data to gateways, forming a single-hop star topology. Multihop networks are receiving the attention of the LoRaWAN community since it allows to extend the coverage area and improve the energy efficiency,<br>thus prolonging the network lifetime. In this paper, we propose an analytical model for multihop LoRaWAN networks.<br>We investigate the energy consumption, throughput, delay, and packet delivery ratio of single-hop and multihop relay<br>networks. The results showed that the network performance could be improved with relay nodes, giving insights to new<br>multihop proposals for LoRaWAN.


2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877253 ◽  
Author(s):  
Mohammed Abdulhakim Al-Absi ◽  
Ahmed Abdulhakim Al-Absi ◽  
TaeYong Kim ◽  
Hoon Jae Lee

Developing a secure and smart intelligent transport system for both safety and non-safety application services requires a certain guarantee of network performance, especially in terms of throughput and packet collision performance. The vehicular ad hoc network propagation is strongly affected due to varying nature of the environment. The existing radio propagation path loss models are designed by using mean additional attenuation sophisticated fading models. However, these models do not consider the obstacle caused due to the obstacle of the vehicle in line of sight of the transmitting and receiving vehicle. Thus, the attenuation signal at the receiving vehicles/devices is affected. To address this issue, we present an obstacle-based radio propagation model that considers the effect caused due to the presence of obstructing vehicle in line of sight. This model is evaluated under different environmental conditions (i.e. city, highway, and rural) by varying the speed of vehicles and vehicles’ density. The performance of the model is evaluated in terms of throughput, collision, transmission efficiency, and packet delivery ratio. The overall result shows that the proposed obstacle-based throughput model is efficient considering varied speed and density. For instance, in the city environment, the model achieves an average improvement of 9.98% and 25.02% for throughput performance over other environments by varying the speed and density of devices respectively and an improvement of 15.04% for packet delivery ratio performance over other environments considering varied speed of devices.


Author(s):  
Subhasis Dash ◽  
Saras Kumar ◽  
Manas Ranjan Lenka ◽  
Amulya Ratna Swain

A wireless sensor network is a collection of batterypowered sensor nodes distributed in a geographical area. Inmany applications, such networks are left unattended for along period of time. These networks suffer from the problemslike high energy consumption, high latency time, and end- to-end low packet delivery ratio. To design a protocol that findsa trade-off between these problems is a challenging task. Inorder to mitigate energy consumption issue, different existingMedia Access Control (MAC) protocols such as S-MAC, RMAC,HEMAC, and Congestion-less Single Token MAC protocols havebeen proposed which ensure better packet delivery but fail toensure energy efficiency due to high end-to-end latency. Theproblem of high end-to-end latency is resolved with the existingrouting protocols such as Fault Tolerant Multilevel Routingprotocol (FMS)and Enhanced Tree Routing (ETR) protocol.AS2-MAC and Multi Token based MAC protocol are able toimprove the end-to-end packet delivery ratio. However, thehierarchical network structure used in these protocols increasestime and energy consumption during network reconstruction.This problem was further resolved in Distributed HierarchicalStructure Routing protocol by constructing the network structurein a distributed manner. In all these existing protocols, efficienttoken management and reliable data delivery ratio was notproperly addressed, which in turn consume more energy. So,it is clear that MAC and routing protocols both together cangive better results related to data transmission in WSN. Inorder to achieve the same, in this paper, we propose a reliabledata transmission algorithm that satisfies both routing and MACprotocol to improve the end-to-end data delivery. The proposedprotocol uses different control message exchange that ensures datapacket delivery in each individual levels and it ultimately uses oftokens to ensure reliable data transmission along with reducedtraffic congestion during end-to-end data delivery. The algorithmconsiderably improves the packet delivery ratio along with reduceenergy consumption of each sensor node. Simulation studies ofthe proposed approach have been carried out and its performancehas been compared with the Multi Token based MAC protocol,AS-MAC protocol and ETR routing protocol. The experimentalresults based on simulation confirms that the proposed approachhas a higher data packet delivery ratio.


2021 ◽  
Author(s):  
Jeferson Rodrigues Cotrim ◽  
João Henrique Kleinschmidt

LoRaWAN is one of the most popular LPWAN technology due to the facility to implement applications that require a low cost, low energy consumption, low data rate, and large coverage area. A LoRaWAN network is composed of end-devices that transmit data to gateways, forming a single-hop star topology. Multihop networks are receiving the attention of the LoRaWAN community since it allows to extend the coverage area and improve the energy efficiency,<br>thus prolonging the network lifetime. In this paper, we propose an analytical model for multihop LoRaWAN networks.<br>We investigate the energy consumption, throughput, delay, and packet delivery ratio of single-hop and multihop relay<br>networks. The results showed that the network performance could be improved with relay nodes, giving insights to new<br>multihop proposals for LoRaWAN.


Author(s):  
Kirti A. Adoni ◽  
Anil S. Tavildar ◽  
Krishna K. Warhade

Background and Objective: Random Black Hole (BH) attack significantly degrades MANET’s performance. For strategic applications, the performance parameters like Packet Delivery Ratio, Routing Overheads, etc. are important. The objectives are: (a) To model random BH attack, (b) To propose a routing strategy for the protocol to mitigate random BH attack, (c) To evaluate and compare the network performance of modified protocol with the standard protocol. Methods: The random BH attack is modelled probabilistically. The analysis is carried out by varying Black Hole Attack (BHA) time as Early, Median, Late occurrences and mix of these three categories. The blocking performance is also analysed by varying the percentages of malicious presence in the network. Normal Optimized Link State Routing (OLSR) protocol is used to simulate the MANET performance using a typical medium size network. The protocol has then been modified using Trust- Confidence aware routing strategy, named as TCAOLSR, with a view to combat the degradations due to the random BH attack. Results: The random behavior of Black Hole attack is analyzed with all the possible random parameters, like deployment of mobile nodes, number of malicious nodes and timing instances at which these nodes change their state. From the results of individual type- Early, Median and Late, it is observed that the TCAOLSR protocol gives stable performance for Packet Delivery Ratio (PDR) and Routing Overheads (RO), whereas for OLSR protocol PDR gradually reduces and RO increases. For individual and mix type, Average Energy Consumption (AEC) per node increases marginally for TCAOLSR protocol. For the mix type, PDR for TCAOLSR is 40-60% better whereas RO for TCAOLSR is very less compared to OLSR protocol. The efficacy of the TCAOLSR protocol remains stable for different categories of BH attack with various percentages of malicious nodes compared to OLSR with the same environment. Conclusion: Simulations reveal that the modified protocol TCAOLSR, effectively mitigates the network degradation for Packet Delivery Ratio and Routing Overheads considerably, at the cost of a slight increase in Average Energy Consumption per node of the network. Efficacy of the OLSR and TCAOLSR protocols has also been defined and compared to prove robustness of the TCAOLSR protocol.


2019 ◽  
Vol 161 ◽  
pp. 150-161 ◽  
Author(s):  
Bin Yang ◽  
Zhenqiang Wu ◽  
Yulong Shen ◽  
Xiaohong Jiang

Author(s):  
Ana Oktaviana ◽  
Doan Perdana ◽  
Ridha Muldina Negara

IEEE 802.11ah is a new task group on the IEEE 802.11 standard designed to work on the 900 MHz. It is with a range of communication coverage up to 1kilometer, lower energy consumption, and up to 8191 stations. There are two types of STAs in 802.11ah: sensor type to support sensor service and non-sensor type for offload service. In this research, it only focuses on non-sensor STA. For non-sensor STA, maximizing throughput is more important than power consumption. This research aims to see the performance of IEEE 802.1 1ah with Enhanced Distributed Channel Access (EDCA). To achieve that purpose, a mechanism is needed to provide guarantees various services required by theSTA. EDCA is an access mechanism used to set the Quality of Service (QoS) for the IEEE 802.11 standard through modifications in MAC layer. In this research,it focuses on one of the EDCA parameters, Arbitration Inter-Frame Space (AIFS). In addition, this research also focuses on the 802.11ah feature is Restricted Access Window (RAW) by changing the number of the RAW groups. From the results of the research, it is found that the improvement scheme with Arbitration Inter-Frame Space Number (AIFSN) value AC BK = 2, AC BE = 1, AC VI = 1, AC VO = 1 has better performance compared to the default scheme with AIFSN value AC BK = 7, AC BE = 3, AC VI = 2, AC VO = 2) with an average throughput of 1.504598 Mbps, average overall delay of 0.066242 second and average PDR of 62%. In addition, changes in the number of RAW groups and RAW slots affect network performance. This feature can improve the value of throughput, average delay, and Packet Delivery Ratio. The goals of this research is to know the effect of AIFSN value changes on AIFSN parameters, variation of RAW group and RAW slot number to throughput,average delay and packet delivery ratio.


2021 ◽  
Vol 23 (05) ◽  
pp. 526-544
Author(s):  
Ashwini V. Jatti ◽  
◽  
Dr V. J. K. Kishor Sonti ◽  

This study presents sinkhole attack detection and prevention using agent-based algorithm. In this algorithm, agents are used to provide information to all node from its reliable neighbors by negotiation in three steps, thus nodes may not be able to pay the attention to the traffic made by sinkhole attacker. In this work, network scale of 500×500 m2 square areas have been considered. Series of simulation are carried in each experiment. Every simulation run is being organized to work for 10mins. Network performance is evaluated in terms of throughput, packet delivery ratio, jitter, delay in packets delivery, data packets received, data packets drop using network simulations software. Network simulation results depicts that in proposed algorithm, throughput increases by 15 to 20 percent, packet delivery ratio increases by 30 to 40%, decrease in the jitter by 10 to 15 %, delay in packets delivery is decreased by 15 to 20 %, data packets received are increased by 15 to 20 % and number of the data packets drop are decreased by 5 to 15 %. Based on simulation results throughput, packet delivery ratio and data packets received increased in proposed agent-based algorithm. However, it is observed that, jitter, delay in packets delivery and data packets drop were decreased.


Sign in / Sign up

Export Citation Format

Share Document