Hydrogen peroxide and quercetin induced changes on cell viability, apoptosis and oxidative stress in HepG2 cells

2020 ◽  
Vol 01 ◽  
Author(s):  
Ayşe Mine Yılmaz ◽  
Gökhan Biçim ◽  
Kübra Toprak ◽  
Betül Karademir Yılmaz ◽  
Irina Milisav ◽  
...  

Background: Different cellular responses influence the progress of cancer. In this study, we have investigated the effect of hydrogen peroxide and quercetin induced changes on cell viability, apoptosis and oxidative stress in human hepatocellular carcinoma (HepG2) cells. Methods: The effects of hydrogen peroxide and quercetin on cell viability, cell cycle phases and oxidative stress related cellular changes were investigated. Cell viability was assessed by WST-1 assay. Apoptosis rate, cell cycle phase changes and oxidative stress were measured by flow cytometry. Protein expressions of p21, p27, p53, NF-Kβ-p50 and proteasome activity were determined by Western blot and fluorometry, respectively. Results: Hydrogen peroxide and quercetin treatment resulted in decreased cell viability and increased apoptosis in HepG2 cells. Proteasome activity was increased by hydrogen peroxide but decreased by quercetin treatment. Conclusion: Both agents resulted in decreased p53 protein expression and increased cell death by different mechanisms regarding proteostasis and cell cycle phases.

Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1871
Author(s):  
Karolina Chodkowska ◽  
Anna Ciecierska ◽  
Kinga Majchrzak ◽  
Piotr Ostaszewski ◽  
Tomasz Sadkowski

Gamma-oryzanol (GO) is a popular supplement for performance horses, dogs, and humans. Previous studies indicated that GO supplementation decreases creatine kinase activity and lactate level after exercise and may affect oxidative stress in Thoroughbred horses. GO may change genes expression in equine satellite cells (ESC). The purpose of this study was to evaluate the effect of GO on miRNA, gene expression, oxidative stress, and cell damage and viability in differentiating ESC pretreated with hydrogen peroxide (H2O2). ESCs were obtained from a young horse’s skeletal muscle. ESCs were pre-incubated with GO (24 h) and then exposed to H2O2 for one hour. For the microRNA and gene expression assessment, the microarray technique was used. Identified miRNAs and genes were validated using real time-quantitative polymerase chain reaction. Several tests related to cell viability, cell damage, and oxidative stress were performed. The microarray analysis revealed differences in 17 miRNAs and 202 genes between GO-treated and control ESC. The tests related to apoptosis, cell viability, and oxidative stress showed that GO affects these processes to varying degrees. Our results suggest that GO can change miRNA and gene expression and may impact the processes involved in tissue repairing after an injury.


Life Sciences ◽  
2020 ◽  
Vol 243 ◽  
pp. 117271 ◽  
Author(s):  
Boris Rodenak-Kladniew ◽  
Agustina Castro ◽  
Peter Stärkel ◽  
Marianela Galle ◽  
Rosana Crespo

2020 ◽  
Vol 47 (4) ◽  
pp. 2771-2780 ◽  
Author(s):  
Mai M. Al-Oqail ◽  
Nida N. Farshori ◽  
Ebtesam S. Al-Sheddi ◽  
Shaza M. Al-Massarani ◽  
Maqsood A. Siddiqui ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1314
Author(s):  
Seung-Cheol Lee ◽  
Seung-Cheol Jee ◽  
Min Kim ◽  
Soee Kim ◽  
Min Kyoung Shin ◽  
...  

Benzo[a]pyrene (B[a]P) is a potentially hepatotoxic group-1 carcinogen taken up by the body through ingestion of daily foods. B[a]P is widely known to cause DNA and protein damages, which are closely related to cell transformation. Accordingly, studies on natural bioactive compounds that attenuate such chemical-induced toxicities have significant impacts on public health. This study aimed to uncover the mechanism of curcumin, the major curcuminoid in turmeric (Curcuma longa), in modulating the lipid accumulation and oxidative stress mediated by B[a]P cytotoxicity in HepG2 cells. Curcumin treatment reduced the B[a]P-induced lipid accumulation and reactive oxygen spicies (ROS) upregulation and recovered the cell viability. Cytochrome P450 family 1 subfamily A polypeptide 1 (CYP1A1) and Cytochrome P450 subfamily B polypeptide 1 (CYP1B1) downregulation resulting from decreased aryl hydrocarbon receptor (AhR) translocation into nuclei attenuated the effects of B[a]P-induced lipid accumulation and repressed cell viability, respectively. Moreover, the curcumin-induced reduction in ROS generation decreased the nuclear translocation of Nuclear factor erythroid-2-related factor 2 (Nrf2) and the expression of phase-II detoxifying enzymes. These results indicate that curcumin suppresses B[a]P-induced lipid accumulation and ROS generation which can potentially induce nonalcoholic fatty liver disease (NAFLD) and can shed a light on the detoxifying effect of curcumin.


2021 ◽  
Author(s):  
Yulia Abalenikhina ◽  
◽  
Elena A. Sudakova ◽  
Pelageya Erokhina ◽  
Aleksey Shchulkin ◽  
...  

The article discusses the new role of pregnane X receptor (PXR) under conditions of oxidative and nitrosative stress. The results showed that the effect of hydrogen peroxide and S-nitrosoglu-tathione in high concentrations on Caco-2 cells leads to a decrease in cell viability, which is accompanied by an increase in the amount of PXR. These changes are offset by the addition of ketoconazole (inhibitor of PXR) to the medium.


2017 ◽  
Vol 37 (7) ◽  
pp. 742-751 ◽  
Author(s):  
AT Jannuzzi ◽  
M Kara ◽  
B Alpertunga

Acetaminophen (APAP) is the most commonly used analgesic and antipyretic drug in the world. However, hepatotoxicity caused by APAP overdose is the most frequent cause of acute liver failure worldwide and oxidative stress involved in the pathogenesis of APAP hepatotoxicity. Celastrol is a natural triterpenoid derived from Tripterygium wilfordii Hook F. that exhibits antioxidant, anti-inflammatory, and antitumor activities. In this study, we aimed to investigate the potential ameliorative effects of celastrol against APAP-induced cytotoxicity and oxidative stress. Human hepatocellular carcinoma cells (HepG2) were incubated with 20 mM of APAP for 24 h and posttreated with 50 nM, 100 nM, or 200 nM of celastrol for a further 24 h. The methylthiazolyldiphenyl-tetrazolium bromide, lactate dehydrogenase, and neutral red uptake assays showed celastrol posttreatments recovered cell viability and cell membrane integrity in a concentration-dependent manner. Celastrol posttreatments exerted a significant increase in the glutathione content and a decrease in the malondialdehyde and protein carbonylation levels. Also, celastrol posttreatments attenuated the APAP-induced oxidative stress by raising glutathione peroxidase, glutathione reductase, and catalase activities. However, superoxide dismutase activity did not change. In conclusion, celastrol treatment may improve cell viability and increase cellular antioxidant defense in HepG2 cells. These results suggest that celastrol may have the potential to ameliorate the APAP-induced oxidative stress and cytotoxicity.


2021 ◽  
Vol 30 (1) ◽  
pp. 5-12
Author(s):  
Septelia Inawati Wanandi ◽  
Sekar Arumsari ◽  
Edwin Afitriansyah ◽  
Resda Akhra Syahrani ◽  
Idham Rafly Dewantara ◽  
...  

BACKGROUND High carbon dioxide (CO2) level from indoor environments, such as classrooms and offices, might cause sick building syndrome. Excessive indoor CO2 level increases CO2 level in the blood, and over-accumulation of CO2 induces an adaptive response that requires modulation of gene expression. This study aimed to investigate the adaptive transcriptional response toward hypoxia and oxidative stress in human peripheral blood mononuclear cells (PBMCs) exposed to elevated CO2 level in vitro and its association with cell viability. METHODS PBMCs were treated in 5% CO2 and 15% CO2, representatives a high CO₂ level condition for 24 and 48 hours. Extracellular pH (pHe) was measured with a pH meter. The levels of reactive oxygen species were determined by measuring superoxide and hydrogen peroxide with dihydroethidium and dichlorofluorescin-diacetate assay. The mRNA expression levels of hypoxia-inducible factor (HIF)-1α, HIF-2α, nuclear factor (NF)-κB, and manganese superoxide dismutase (MnSOD) were analyzed using a real-time reverse transcriptase-polymerase chain reaction (qRT-PCR). Cell survival was determined by measuring cell viability. RESULTS pHe increased in 24 hours after 15% CO₂ treatment, and then decreased in 48 hours. Superoxide and hydrogen peroxide levels increased after the 24- and 48-hour of high CO₂ level condition. The expression levels of NF-κB, MnSOD, HIF-1α, and HIF-2α decreased in 24 hours and increased in 48 hours. The increased antioxidant mRNA expression in 48 hours showed that the PBMCs were responsive under high CO2 conditions. Elevated CO2 suppressed cell viability significantly in 48 hours. CONCLUSIONS After 48 hours of high CO₂ level condition, PBMCs showed an upregulation in genes related to hypoxia and oxidative stress to overcome the effects of CO2 elevation.


2019 ◽  
Vol 19 (9) ◽  
pp. 688-698 ◽  
Author(s):  
Azam Roohi ◽  
Mahin Nikougoftar ◽  
Hamed Montazeri ◽  
Shadisadat Navabi ◽  
Fazel Shokri ◽  
...  

Background: Oxidative stress and chronic hyperglycemia are two major side effects of type 2 diabetes affecting all cell types including mesenchymal stem cells (MSCs). As a cell therapy choice, understanding the behavior of MSCs will provide crucial information for efficient treatment. Methods: Placental mesenchymal stem cells were treated with various concentrations of glucose, metformin, rapamycin, and hydrogen peroxide to monitor their viability and cell cycle distribution. Cellular viability was examined via the MTT assay. Cell cycle distribution was studied by propidium iodide staining and apoptosis was determined using Annexin Vpropidium iodide staining and flow cytometry. Involvement of potential signaling pathways was evaluated by Western blotting for activation of Akt, P70S6K, and AMPK. Results: The results indicated that high glucose augmented cell viability and reduced metformin toxic potential. However, the hydrogen peroxide and rapamycin toxicities were exacerbated. Conclusion: Our findings suggest that high glucose concentration has a major effect on placental mesenchymal stem cell viability in the presence of rapamycin, metformin and hydrogen peroxide in culture.


2021 ◽  
Author(s):  
Büşra Aydin ◽  
Sema Arslan ◽  
Fatih Bayraklı ◽  
Betül Karademir ◽  
Kazim Yalcin Arga

Introduction: Prolactinomas, also called lactotroph adenomas, are the most encountered type of hormone-secreting pituitary neuroendocrine tumors (PitNET) in the clinic. The preferred first-line therapy is a medical treatment with dopamine agonists (DA), mainly cabergoline, to reduce serum prolactin levels, tumor volume, and mass effect. However, in some cases, patients have displayed DA-resistance with aggressive tumor behavior or are faced with recurrence after drug withdrawal. Also, currently used therapeutics have notorious side effects and impair the life quality of the patients. Methods: Since the amalgamation of clinical and laboratory data besides tumor histopathogenesis and transcriptional regulatory features of the tumor emerge to exhibit essential roles in the behavior and progression of prolactinomas, in this work, we integrated mRNA and microRNA (miRNA) level transcriptome data that exploit disease-specific signatures in addition to biological and pharmacological data to elucidate a rational prioritization of pathways and drugs in prolactinoma. Results: We identified eight drug candidates through drug repurposing based on mRNA-miRNA level data integration and evaluated their potential through in vitro assays in the MMQ cell line. Seven re-purposed drugs including 5-flourocytosine, nortriptyline, neratinib, puromycin, taxifolin, vorinostat, and zileuton were proposed as potential drug candidates for the treatment of prolactinoma. We further hypothesized possible mechanisms of drug action on MMQ cell viability through analyzing PI3K/Akt signaling pathway and cell cycle arrest via flow cytometry and western blotting. Discussion: We presented the transcriptomic landscape of prolactinoma through miRNA and mRNA level data integration and proposed repurposed drug candidates based on this integration. We validated our findings through testing cell viability, cell cycle phases, and PI3K/Akt protein expressions. Effects of the drugs on cell cycle phases and inhibition of PI3K/Akt pathway by all drugs gave us promising output for further studies using these drugs in the treatment of prolactinoma. This is the first study that reports miRNA-mediated repurposed drugs for prolactinoma treatment via in vitro experiments.


Sign in / Sign up

Export Citation Format

Share Document