In Silico
Study of Pubchem Compounds for Solanum torvum as Antiviral Agent against SARS-CoV-2
Background: The recent epidemic outbreak of a novel coronavirus called SARS-CoV-2 has caused suffering among many people in the form of respiratory tract infection. Currently, there are no targeted drugs, and effective treatment options remain limited. Objective: In order to rapidly discover new compounds for clinical purposes, in silico drug design and virtual drug screening have been initiated to identify new drug leads that target the main protease of the COVID-19 virus. Mpro is a key CoV enzyme, which plays a pivotal role in mediating viral replication and transcription, making it an attractive drug target for this virus. Methods: The present study was done to investigate the PubChem compounds of an ayurvedic herb Solanum torvum as an effective antiviral agent against COVID-19. The PubChem compounds like Torvoside H, Torvoside A, Torvoside E, Torvoside F, Torvonin A, 2,3,4-trimethyltriacontane, Torvanol A Q27134802, 5-hexatriacontanone, Jurubine, Tritriacontan-3-one, Torvanol A, Chlorogenone Spirostane-3,6-dione of Solanum torvum were downloaded from NCBI PubChem database acting as ligands for protein ligand docking. The 3D structure of the viral MPro (PDB ID: 6yb7) was retrieved from the RCSB PDB database. The active sites and binding sites were analyzed, and Docking molecular simulations were realized among a total of 12 ligands against COVID-19. Results: The PubChem compounds from the fruits of Solanum torvum showed good docking score and protein-ligand interaction, indicating that the PubChem compounds can cure the COVID-19 disease and act as an effective antiviral agent. Conclusion: Most of the PubChem compounds in the fruits of Solanum torvum showed better paramagnetic parameters.