scholarly journals DESAIN SABO DAM TIPE CONDUIT SEBAGAI PENGENDALI DAYA RUSAK ALIRAN DEBRIS

Author(s):  
Yuli Fajarwati ◽  
Teuku Faisal Fathani ◽  
Fikri Faris ◽  
Wahyu Wilopo

ABSTRAKSungai Air Kotok di Kabupaten Lebong, Bengkulu memiliki litologi batuan yang rapuh akibat pengaruh panas bumi, kondisi tersebut menyebabkan rentan mengalami pergerakan massa tanah/batuan. Oleh karena itu, diperlukan upaya mitigasi untuk mengurangi risiko bencana dengan perencanaan bangunan pengendali aliran debris berupa sabo dam. Penelitian ini bertujuan untuk merencanakan desain sabo dam tipe conduit yang dirancang secara seri dan mengevaluasi stabilitas sabo dam berdasar SNI 2851:2015. Hasil perhitungan menunjukkan debit puncak untuk kala ulang 100 tahun sebesar 171,21 m3/detik. Empat seri sabo dam memiliki dimensi lebar pelimpah rerata ± 40 m, kedalaman aliran debris sebesar 1 m, dan tinggi pelimpah ialah 2,4 m. Stabilitas sabo dam saat banjir diperoleh faktor aman untuk stabilitas geser dan guling sebesar 3,46 ; 1,62. Adapun faktor aman terhadap pengaruh aliran debris untuk stabilitas geser dan guling adalah 3,30 ; 1,58. Berdasarkan hasil analisis, empat seri sabo dam tipe conduit yang dirancang mampu mengendalikan daya rusak banjir maupun aliran debris.Kata kunci: Hidraulika sungai, aliran sedimen, bangunan sabo, stabilitas sabo ABSTRACTAir Kotok River in Lebong Regency, Bengkulu Province has the lithology of weathered rock which is a result of geothermal process, this condition causes to be susceptible to land / rock mass movements. Therefore, the mitigation efforts are needed to reduce the risk from disaster by design debris flow control such as sabo dam. This study aims to design series of conduit type sabo dam and evaluate the stability based on SNI 2851: 2015. The calculation shows that the peak discharge for the 100-year return period is 171.21 m3 / sec. The four sabo dam series have dimensions of spill width of ± 40 m, debris flow depth of 1 m, and overflow height of 2.4 m. The stability of sabo dam has safety factor in flood condition for shear and overturning stability are 3.46; 1.62, while in a debris flow condition for shear and overturning stability are 3.30; 1.58. Based on the results, the four series of conduit sabo dam are able to control the destructive power of floods and debris flows.Key word: River hydraulic, sediment flow, sabo building, stability of sabo

2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Piotr MAŁKOWSKI ◽  
Zbigniew NIEDBALSKI ◽  
Łukasz BEDNAREK

Ensuring the stability of mining excavations is a crucial aspect of underground mining. For thispurpose, appropriate shapes, dimensions, and support of workings are designed for the given mining andgeological conditions. However, for the proper assessment of the adequacy of the used technical solutions,and the calibration of the models used in the support design, it is necessary to monitor the behavior of theexcavation. It should apply to the rock mass and the support. The paper presents the automatic systemdesigned for underground workings monitoring, and the example of its use in the heading. Electronicdevices that measure the rock mass movements in the roof, the load on the standing support, and on bolts,the stress in the rock mass, are connected to the datalogger and can collect data for a long of time withoutany maintenance, also in hard-to-reach places. This feature enables the system to be widely used, inparticular, in excavations in the vicinity of exploitation, goafs, or in the area of a liquidated exploitationfield.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Hong-di Jing ◽  
Yuan-hui Li ◽  
Kun-meng Li

In order to study the deformation mechanism of soft rock roadway in underground mines, it is necessary not only to study the influence of the dynamic disturbance caused by the cyclic mining blasting vibration on the stability of the soft rock roadway but also to study the degradation of the roadway surrounding rock itself and other factors. The paper presented a synthetic research system to investigate the factors that influence roadway rock structure deterioration in Baoguo Iron Mine. Firstly, the stability of rock mass was analyzed from the perspective of the physical and structural characteristics of the rock mass. Afterwards, according to monitoring data of mining blasting vibration, a suitable safety blasting prediction model for Baoguo Iron Mine was determined. And then, combining the results of mining blasting vibration monitoring and deformation monitoring, the effect of cyclic mining blasting on the stability of the soft rock roadway was obtained. By systematically studying the intrinsic factors of rock quality degradation and external environmental disturbances and their interactions, this paper comprehensively explores the deformation mechanism of soft rock roadway and provides the support for fundamentally solving the large deformation problems of soft rock roadway in underground mines.


1980 ◽  
Vol 17 (4) ◽  
pp. 607-612 ◽  
Author(s):  
Luis E. Vallejo

A new approach to the stability analysis of thawing slopes at shallow depths, taking into consideration their structure (this being a mixture of hard crumbs of soil and a fluid matrix), is presented. The new approach explains shallow mass movements such as skin flows and tongues of bimodal flows, which usually take place on very low slope inclinations independently of excess pore water pressures or increased water content in the active layer, which are necessary conditions in the methods available to date to explain these movements.


2013 ◽  
Vol 405-408 ◽  
pp. 402-405 ◽  
Author(s):  
Yun Jie Zhang ◽  
Tao Xu ◽  
Qiang Xu ◽  
Lin Bu

Based on the fluid-solid coupling theory, we study the stability of surrounding rock mass around underground oil storage in Huangdao, Shandong province, analyze the stress of the surrounding rock mass around three chambers and the displacement change of several key monitoring points after excavation and evaluate the stability of surrounding rock mass using COMSOL Multiphysics software. Research results show that the stress at both sides of the straight wall of cavern increases, especially obvious stress concentration forms at the corners of the cavern, and the surrounding rock mass moves towards the cavern after excavation. The stress and displacement of the surrounding rock mass will increase accordingly after setting the water curtains, but the change does not have a substantive impact on the stability of surrounding rock mass.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Hossein Taherynia ◽  
Mojtaba Mohammadi ◽  
Rasoul Ajalloeian

Assessment of the stability of natural and artificial rock slopes is an important topic in the rock mechanics sciences. One of the most widely used methods for this purpose is the classification of the slope rock mass. In the recent decades, several rock slope classification systems are presented by many researchers. Each one of these rock mass classification systems uses different parameters and rating systems. These differences are due to the diversity of affecting parameters and the degree of influence on the rock slope stability. Another important point in rock slope stability is appraisal hazard and risk analysis. In the risk analysis, the degree of danger of rock slope instability is determined. The Lashotor pass is located in the Shiraz-Isfahan highway in Iran. Field surveys indicate that there are high potentialities of instability in the road cut slopes of the Lashotor pass. In the current paper, the stability of the rock slopes in the Lashotor pass is studied comprehensively with different classification methods. For risk analyses, we estimated dangerous area by use of the RocFall software. Furthermore, the dangers of falling rocks for the vehicles passing the Lashotor pass are estimated according to rockfall hazard rating system.


2018 ◽  
Vol 175 ◽  
pp. 03025
Author(s):  
Feng Zhou ◽  
Hongjian Jiang ◽  
Xiaorui Wang

The problem about the stability of tunnel surrounding rock is always an important research object of geotechnical engineering, and the right or wrong of the result from stability analysis on surrounding rock is related to success or failure of an underground project. In order to study the deformation rules of weak surrounding rock along with lateral pressure coefficient and burying depth varying under high geostress and discuss the dynamic variation trend of surrounding rock, the paper based on the application of finite difference software of FLAC3D, which can describe large deformation character of rock mass, analog simulation analysis of surrounding rock typical section of the class II was proceeded. Some conclusions were drawn as follows: (1) when burying depth is invariable, the displacements of tunnel surrounding rock have a trend of increasing first and then decreasing along with increasing of lateral pressure coefficient. The floor heave is the most sensitive to change of lateral pressure coefficient. The horizontal convergence takes second place. The vault subsidence is feeblish to change of lateral pressure coefficient. (2) The displacements of tunnel surrounding rock have some extend increase along with increasing of burying depth. The research conclusions are very effective in analyzing the stability of surrounding rock of Yunling tunnel. These are going to be a reference to tunnel supporting design and construction.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2807
Author(s):  
Shan Yang ◽  
Zitong Xu ◽  
Kaijun Su

The slope stability in an open-pit mine is closely related to the production safety and economic benefit of the mine. As a result of the increase in the number and scale of mine slopes, slope instability is frequently encountered in mines. Therefore, it is of scientific and social significance to strengthen the study of the stability of the slope rock mass. To accurately classify the stability of the slope rock mass in an open-pit mine, a new stability evaluation model of the slope rock mass was established based on variable weight and matter–element extension theory. First, based on the main evaluation indexes of geology, the environment, and engineering, the stability evaluation index system of the slope rock mass was constructed using the corresponding classification criteria of the evaluation index. Second, the constant weight of the evaluation index value was calculated using extremum entropy theory, and variable weight theory was used to optimize the constant weight to obtain the variable weight of the evaluation index value. Based on matter–element extension theory, the comprehensive correlation between the upper and lower limit indexes in the classification criteria and each classification was calculated, in addition to the comprehensive correlation between the rock mass indexes and the stability grade of each slope. Finally, the grade variable method was used to calculate the grade variable interval corresponding to the classification criteria of the evaluation index and the grade variable value of each slope rock mass, so as to determine the stability grade of the slope rock. The comparison results showed that the classification results of the proposed model are in line with engineering practice, and more accurate than those of the hierarchical-extension model and the multi-level unascertained measure-set pair analysis model.


Sign in / Sign up

Export Citation Format

Share Document