scholarly journals Selection of the order of autoregressive models for spectral analysis of noise corrupted signals

2017 ◽  
Vol 4 (12) ◽  
pp. 79-82
Author(s):  
Jakub Jeřábek ◽  
2014 ◽  
Vol 6 (1) ◽  
pp. 9-27 ◽  
Author(s):  
Abhir Bhalerao ◽  
Gregory Reynolds

The assessment of forensic photographs often requires the calibration of the resolution of the image so that accurate measurements can be taken of crime-scene exhibits or latent marks. In the case of latent marks, such as fingerprints, image calibration to a given dots-per-inch is a necessary step for image segmentation, preprocessing, extraction of feature minutiae and subsequent fingerprint matching. To enable scaling, such photographs are taken with forensic rulers in the frame so that image pixel distances can be converted to standard measurement units (metric or imperial). In forensic bureaus, this is commonly achieved by manual selection of two or more points on the ruler within the image, and entering the units of the measure distance. The process can be laborious and inaccurate, especially when the ruler graduations are indistinct because of poor contrast, noise or insufficient resolution. Here the authors present a fully automated method for detecting and estimating the direction and graduation spacing of rulers in forensic photographs. The method detects the location of the ruler in the image and then uses spectral analysis to estimate the direction and wavelength of the ruler graduations. The authors detail the steps of the algorithm and demonstrate the accuracy of the estimation on both a calibrated set of test images and a wide collection of good and poor quality crime-scene images. The method is shown to be fast and accurate and has wider application in other imaging disciplines, such as radiography, archaeology and surveying.


Author(s):  
Dafydd Gibbon

The low frequency (LF) spectral analysis or ‘rhythm spectrum’ approach to the quantitative analysis and comparison of speech rhythms is extended beyond syllable or word rhythms to ‘rhetorical rhythms’ in read-aloud narratives, in a selection of exploratory scenarios, with the aim of developing a unified theory of speech rhythms. Current methodologies in the field are first discussed, then the choice of data is motivated and the modulation-theoretic rhythm spectrum and rhythm spectrogram approach is applied to the amplitude modulation (AM) and frequency modulation (FM) of speech. New concepts of rhythm formant, rhythm spectrogram and rhythm formant trajectory are introduced in the Rhythm Formant Theory (RFT) framework with its associated methodology Rhythm Formant Analysis (RFA) in order to capture second order regularities in the temporal variation of rhythms. The interaction of AM and FM rhythm factors is explored, contrasting English with Mandarin Chinese. The LF rhythm spectrogram is introduced in order to recover temporal information about long-term rhythms, and to investigate the configurative function of rhythm. The trajectory of highest magnitude frequencies through the component spectra of the LF spectrogram is extracted and applied in classifying readings in different languages and individual speaking styles using distance-based hierarchical clustering, and the existence of long-term second order ‘rhythms of rhythm’ in long narratives is shown. In the conclusion, pointers are given to the extension of this exploratory RFT rhythm approach for future quantitative confirmatory investigations.


Sign in / Sign up

Export Citation Format

Share Document