scholarly journals Модификация структурно-морфологических свойств германия в многослойной нанопериодической структуре Al-=SUB=-2-=/SUB=-O-=SUB=-3-=/SUB=-/Ge с промежуточными слоями Si при отжиге

Author(s):  
М.В. Байдакова ◽  
Н.А. Берт ◽  
В.Ю. Давыдов ◽  
А.В. Ершов ◽  
А.А. Левин ◽  
...  

Multi-layered nanosized Al2O3/Ge/Si structures manufactured by electron-beam evaporation and annealed at a temperature within the range 700−900◦C are examined using transmission electron microscopy, Raman spectroscopy and X-ray diffraction techniques. The periodic structure with a good layer planarity is confirmed to retain after heat treatment up to 900◦C. At an annealing temperature above 700◦C, nanocrystallites with a bimodal size distribution start to form within initially amorphous Ge layers, the mean size of small crystallites being determined by Ge layer thickness and annealing temperature. An essential loss of Ge from multi-layered structure after 900oC anneal and development of Ge1−x Six solid solution with x up to 0.07 in the nanocrystallites is revealed.

2005 ◽  
Vol 20 (9) ◽  
pp. 2480-2485 ◽  
Author(s):  
Kohei Kadono ◽  
Tatsuya Suetsugu ◽  
Takeshi Ohtani ◽  
Toshihiko Einishi ◽  
Takashi Tarumi ◽  
...  

Copper(I) chloride and bromide nanoparticle-dispersed glasses were prepared by means of a conventional copper staining. The staining was performed by the following process: copper stain was applied on the surfaces of Cl−- or Br−-ion-containing borosilicate glasses, and the glasses were heat-treated at 510 °C for various times. Typical exciton bands observed in the absorption spectra of the glasses after the heat treatment indicated that CuCl and CuBr particles were formed in the surface region of the glasses. The average sizes of the CuCl and CuBr particles in the glasses heat-treated for 48 h were estimated at 4.8 and 2.7 nm, respectively. The nanoparticles were also characterized by x-ray diffraction and transmission electron microscopy. Depth profiles of Cu and CuBr concentration in the glass heat-treated for 48 h were measured. Copper decreased in concentration monotonously with depth, reaching up to 60 μm, while the CuBr concentration had a maximum at about 25 μm in depth.


2012 ◽  
Vol 05 ◽  
pp. 841-846
Author(s):  
AMIR KEYVANARA ◽  
REZA GHOLAMIPOUR ◽  
SHAMSEDIN MIRDAMADI ◽  
FARZAD SHAHRI ◽  
HOSSEIN SEPEHRI AMIN

Melt spun ribbons of Co 64 Fe 4 Ni 2 B 19 Si 8 Cr 3 alloy have been prepared and the nanocrystallization process was carried out by the heat treatment of the as spun ribbons above the crystallization temperature. Structural studies of the samples have been performed by transmission electron microscopy and X-ray diffraction. Magnetic properties of the samples and magnetoimpedance measurements were investigated and it was revealed that magnetic properties and magnetoimpedance of the samples deteriorate by the formation of nanocrystalline phases.


1985 ◽  
Vol 54 ◽  
Author(s):  
A. Lahav ◽  
M. Eizenberg ◽  
Y. Komem

ABSTRACTThe reaction between Ni60Ta40 amorphous alloy and (001) GaAs was studied by cross-sectional transmission electron microscopy, Auger spectroscopy, and x-ray diffraction. At 400°C formation of Ni GaAs at the interface with GaAs was observed. After heat treatment at 600°C in vacuum a layered structure of TaAs/NiGa/GaAs has been formed. The NiGa layer has epitaxial relations to the GaAs substrate. The vertical phase separation can be explained by opposite diffusion directions of nickel and arsenic atoms.


1992 ◽  
Vol 286 ◽  
Author(s):  
John Q. Xiao ◽  
J. Samuel ◽  
C. L. Chien

ABSTRACTWe have studied the structure of the Co-Ag granular system across the entire composition range, as well as the annealed samples, using transmission electron microscopy (TEM) and x-ray diffraction. GMR, as much as 80% at 5K and 25% at room temperature, have been observed. The absolute values of the resistivity (ρ) and the change of the resistivity (δρ) as functions of the magnetic Co concentration and the annealing temperature have been determined. A linear relation between δρ and I/rco, where rco is Co particle size, has been found. This result suggests that the magnetic scattering at the interfaces is crucial to GMR.


2011 ◽  
Vol 295-297 ◽  
pp. 1095-1098
Author(s):  
Chun Kan

The air-water interfacial zirconia film composed of nanodisks with self-assembly structure is prepared. Scanning electron microscopy (SEM), Energy Dispersive Spectrum (EDS), X-ray diffraction (XRD) and Transmission electron microscopy (TEM) are used to characterize the film. Furthermore, the heat-treatment of this film is studied by thermogravimetry and differential thermal analysis (TG-DTA), XRD, and Raman spectroscopy (Raman). The results suggest that the zirconia of the samples changes from amorphous phase to t-ZrO2phase then m-ZrO2phase with the rise of calcined temperature.


Author(s):  
Е.В. Астрова ◽  
А.В. Парфеньева ◽  
А.М. Румянцев ◽  
В.П. Улин ◽  
М.В. Байдакова ◽  
...  

The effect of annealing temperature in argon atmosphere on the ability of Si-C nanocomposites to reversibly insert lithium was investigated. It was found that the higher the annealing temperature during the formation of the composite, the lower is the capacitance of the electrode made from it. X-ray diffraction analysis and transmission electron microscopy reveal that the reason of the capacitance decrease is formation at T  1100°C of silicon carbide of cubic modification -SiC, inactive with respect to the formation of lithium alloys or intercalates.


2019 ◽  
Vol 19 (6) ◽  
pp. 3210-3217
Author(s):  
Jing Yang ◽  
Wang-Qing Fan ◽  
Ruihua Mu ◽  
Yamei Zhao

A novel Pd/SiO2 inorganic–organic composite material was developed for the selective separation of H2 from a mixture of H2 and CO2. Its thermal stability and microstructure calcined under N2 atmosphere were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and N2 sorption–desorption measurements. Pd element in Pd/SiO2 gel material exists in PdCl2 form, calcination at 350 °C can result in the complete transformation of Pd2+ to metallic Pd0. With the increase of calcination temperature, the hydrophobic Si–CH3 bands decreased in intensity. The residue of Pd/SiO2 material calcined at 800 °C was mainly composed of Si–O–Si, metallic Pd0, CSi4 and some elemental C0. The mean pore size, BET specific surface area and total pore volume of the as-prepared Pd/SiO2 material calcined at 350 °C was about 2.26 nm, 417.35 m2 g−1 and 0.288 m3 g−1, respectively. The mean H2 and CO2 permeances of the corresponding Pd/SiO2 membrane were 9.90×10−6 and 9.10×10−7 mol m−2 Pa−1 s−1, respectively, when operating at 200 °C and a pressure difference of 0.3 MPa. After the steam exposure at 200 °C for 168 h, the H2 permeance decreased by 3.23% while the H2/CO2 permselectivity increased by 2.50%.


1996 ◽  
Vol 457 ◽  
Author(s):  
Bridget M. Smyser ◽  
Jane F. Connelly ◽  
Richard D. Sisson ◽  
Virgil Provenzano

ABSTRACTThe effects of grain size on the phase transformations in nanocrystalline ZrO2-Al2O3 have been experimentally investigated. Compositions from 10 to 50 vol% Al2O3 in ZrO2 were obtained as a hydroxide gel. The powders were then calcined at 600 °C for 17 hours and heat treated at 1100 °C for 24 and 120 hours and at 1200 °C for 2 hours. The phase distribution and grain size were determined using x-ray diffraction and transmission electron microscopy. The initial grain size after calcining was 8–17 nm. It was determined that the critical ZrO2 grain size to avoid the tetragonal to monoclinic phase transformation on cooling from 1100 °C was between 17 and 25 nm. Samples containing 50% Al2O3 maintained a grain size below the critical size for all times and temperatures. The 30% Al2O3 samples showed the same behavior in all but one heat treatment. The remainder of the samples showed significant grain growth and at least partial transformation to the monoclinic phase.


NANO ◽  
2016 ◽  
Vol 11 (02) ◽  
pp. 1650023 ◽  
Author(s):  
Lin Ma ◽  
Xiaoping Zhou ◽  
Limei Xu ◽  
Xuyao Xu ◽  
Lingling Zhang

We introduce a two-step hydrothermal and microwave method to prepare novel SnO2/MoS2 composites. The as-prepared samples are well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The experimental results indicate that the SnO2/MoS2 composites are composed of MoS2 nanosheets and ultrafine SnO2 nanoparticles with mean size of 3–4[Formula: see text]nm which are well-distributed and anchored on the surface of MoS2 nanosheets. The resultant composites demonstrate prominently improved electrochemical performances, which could be attributed to the unique and robust microstructures and synergetic effect between MoS2 and SnO2.


Sign in / Sign up

Export Citation Format

Share Document