Heat Transfer of Polymer Particles in Gas-Phase Polymerization Reactors

Author(s):  
Yaghoub Behjat ◽  
Mohammad Ali Dehnavi ◽  
Shahrokh Shahhosseini ◽  
Seyed Hassan Hashemabadi

In this paper the effects of particles configuration and particles distance on the heat transfer rate in a gas phase olefin polymerization reactor have been studied using the computational fluid dynamic (CFD) modeling approach. The goal was to determine the causes of particle overheating in this reactor. It has been shown that classic correlations such as Ranz-Marshall are sufficiently adequate when far away particles with no interactions are to be modeled. However, when particles are sufficiently close to having interactions, these correlations fail to satisfactorily predict the convective heat transfer coefficient. The results indicate an increase in particle distance leads to an increase in the Nusselt number on the particle surface. Therefore, for particles with a large distance and triangular or rotated square configurations, the local Nusselt number is closer to the Nusselt number for a single particle.

2003 ◽  
Vol 43 (10-11) ◽  
pp. 1199-1220 ◽  
Author(s):  
Anne Gobin ◽  
Hervé Neau ◽  
Olivier Simonin ◽  
Jean-Richard Llinas ◽  
Vince Reiling ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Reyes Carlos Macedo y Ramírez ◽  
Jorge Fernando Vélez Ruiz

Abstract Even though the evaporation is a common process in the food industry, there is scarce information about the convective coefficient evaluation as an important parameter for equipment and process design. A research on evaporation of sugar solution in a double effect was carried out. The experimental results obtained in this equipment, from the heat transfer and concentration processes are presented, a range of 2658–6091 W of heat flow was quantified implying computed values of 1431–3763 W/m2K for the convective coefficients and 1020–1815 W/m2K for the overall coefficient. The quantification of the convective coefficient, the fitting methodology and modeling were developed in order, to obtain the correspondent correlations. Then, from a set of several equations, two general relationships are proposed. Both correlations were applied to experimental and supposed data, finding a difference lower than 30% between the experimental and predicted values of the Nusselt number, that was considered as satisfactory.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
M. Mohammadpour-Ghadikolaie ◽  
M. Saffar-Avval ◽  
Z. Mansoori ◽  
N. Alvandifar ◽  
N. Rahmati

Laminar forced convection heat transfer from a constant temperature tube wrapped fully or partially by a metal porous layer and subjected to a uniform air cross-flow is studied numerically. The main aim of this study is to consider the thermal performance of some innovative arrangements in which only certain parts of the tube are covered by metal foam. The combination of Navier–Stokes and Darcy–Brinkman–Forchheimer equations is applied to evaluate the flow field. Governing equations are solved using the finite volume SIMPLEC algorithm and the effects of key parameters such as Reynolds number, metal foam thermophysical properties, and porous layer thickness on the Nusselt number are investigated. The results show that using a tube which is fully wrapped by an external porous layer with high thermal conductivity, high Darcy number, and low drag coefficient, can provide a high heat transfer rate in the high Reynolds number laminar flow, increasing the Nusselt number almost as high as 16 times compared to a bare tube. The most important result of thisstudy is that by using some novel arrangements in which the tube is partially covered by the foam layer, the heat transfer rate can be increased at least 20% in comparison to the fully wrapped tube, while the weight and material usage can be considerably reduced.


Author(s):  
S Shuchi ◽  
K Sakatani ◽  
H Yamaguchi

An investigation was conducted for heat transfer characteristics of binary magnetic fluid flow in a partly heated circular pipe experimentally. The boiling heat transfer characteristics on the effects of the relative position of the magnetic field to the heated region were particularly considered in the present study. From the experimental verification, the Nusselt number, representing boiling heat transfer characteristics, was obtained for various flow and magnetic conditions which were represented by the non-dimensional parameters of the Reynolds number and the magnetic pressure number. Additionally, the rate of change of the Nusselt number found by applying the magnetic field was also estimated and the optimal position of the field to the partly heated region was discussed. The results indicated that the effect of the magnetic field to the heat transfer rate from the heated wall was mainly subjected to the effect of the vortices induced in the magnetic field region and the possibility of controlling the heat transfer rate by applying an outer magnetic field to utilize the effect.


2021 ◽  
Author(s):  
Hojjat Khozeymeh-Nezhad ◽  
Yaser Basati ◽  
Hamid Niazmand

Abstract In the present paper for the first time, a Lattice Boltzmann Simulation is performed to analyze the simultaneous effects of a hot rotating elliptic cylinder and the magnetic field on the mixed convection flow in a square enclosure. Complicated flow patterns and isotherms plots are found and analyzed in the concentric annulus between the internal elliptic cylinder and the outer square enclosure. Results indicate that increasing the Reynolds number, instantaneous averaged Nusselt number of the enclosure and its oscillation amplitude increase, while decrease with increasing the Hartmann number especially at its lower values. Furthermore, response surface method is adopted to find the optimal location of the elliptic cylinder. Response surface optimization results reveal that the average Nusselt number shows a decreasing-increasing trend with increasing both non-dimensional parameters of cylinder center (Xc,Yc) Finally, the optimal location of the elliptic cylinder for the maximum heat transfer rate is obtained as Xc=0.65 and Yc=0.35. Moreover, a comparative study is performed to evaluate the heat transfer effects of the elliptical cylinder rotation as compared to circular cylinder. It was found that the elliptical cylinder rotation has a significant effect on the heat transfer enhancement, especially at high values of Re and Ha. As an example, the heat transfer rate for the elliptical cylinder at Re=200 is increased by 13 % and 34% as compared to the circular cylinder at Ha=50 and 100, respectively.


2019 ◽  
Vol 30 (5) ◽  
pp. 2781-2807
Author(s):  
Davood Toghraie ◽  
Ehsan Shirani

Purpose The purpose of this paper is to investigate the mixed convection of a two-phase water–aluminum oxide nanofluid in a cavity under a uniform magnetic field. Design/methodology/approach The upper wall of the cavity is cold and the lower wall is warm. The effects of different values of Richardson number, Hartmann number, cavitation length and solid nanoparticles concentration on the flow and temperature field and heat transfer rate were evaluated. In this paper, the heat flux was assumed to be constant of 10 (W/m2) and the Reynolds number was assumed to be constant of 300 and the Hartmann number and the volume fraction of solid nanoparticles varied from 0 to 60 and 0 to 0.06, respectively. The Richardson number was considered to be 0.1, 1 and 5. Aspect ratios were 1, 1.5 and 2. Findings Comparison of the results of this paper with the results of the numerical and experimental studies of other researchers showed a good correlation. The results were presented in the form of velocity and temperature profiles, stream and isotherm lines and Nusselt numbers. The results showed that by increasing the Hartmann number, the heat transfer rate decreases. An increase from 0 to 20 in Hartmann number results in a 20 per cent decrease in Nusselt numbers, and by increasing the Hartmann number from 20 to 40, a 16 per cent decrease is observed in Nusselt number. Accordingly, it is inferred that by increasing the Hartmann number, the reduction in the Nusselt number is decreased. As the Richardson number increased, the heat transfer rate and, consequently, the Nusselt number increased. Therefore, an increase in the Richardson number results in an increase of the Nusselt number, that is, an increase in Richardson number from 0.1 to 1 and from 1 to 5 results in 37 and 47 per cent increase in Nusselt number, respectively. Originality/value Even though there have been numerous investigations conducted on convection in cavities under various configurations and boundary conditions, relatively few studies are conducted for the case of nanofluid mixed convection in square lid-driven cavity under the effect of magnetic field using two-phase model.


2019 ◽  
Vol 30 (5) ◽  
pp. 2583-2605 ◽  
Author(s):  
Mohammad Mohsen Peiravi ◽  
Javad Alinejad ◽  
D.D. Ganji ◽  
Soroush Maddah

Purpose The purpose of this study is investigating the effect of using multi-phase nanofluids, Rayleigh number and baffle arrangement simultaneously on the heat transfer rate and Predict the optimal arrangement type of baffles in the differentiation of Rayleigh number in a 3D enclosure. Design/methodology/approach Simulations were performed on the base of the L25 Taguchi orthogonal array, and each test was conducted under different height and baffle arrangement. The multi-phase thermal lattice Boltzmann based on the D3Q19 method was used for modeling fluid flow and temperature fields. Findings Streamlines, isotherms, nanofluid volume fraction distribution and Nusselt number along the wall surface for 104 < Ra < 108 have been demonstrated. Signal-to-noise ratios have been analyzed to predict optimal conditions of maximize and minimize the heat transfer rate. The results show that by choosing the appropriate height and arrangement of the baffles, the average Nusselt number can be changed by more than 57 per cent. Originality/value The value of this paper is surveying three-dimensional and two-phase simulation for nanofluid. Also using the Taguchi method for Predicting the optimal arrangement type of baffles in a multi-part enclosure. Finally statistical analysis of the results by using of two maximum and minimum target Function heat transfer rates.


Author(s):  
Guillermo E. Valencia ◽  
Miguel A. Ramos ◽  
Antono J. Bula

The paper describes an experimental procedure performed to obtain the convective heat transfer coefficient of Al2O3 nanofluid working as cooling fluid under turbulent regimen through arrays of aluminum microchannel heat sink having a diameter of 1.2 mm. Experimental Nusselt number correlation as a function of the volume fractions, Reynolds, Peclet and Prandtl numbers for a constant heat flux boundary condition is presented. The correlation for Nusselt number has a good agreement with experimental data and can be used to predict heat transfer coefficient for this specific nanofluid, water/Al2O3. Furthermore, the pressure drop is also analyzed considering the different nanoparticles concentration.


2019 ◽  
Vol 16 (2) ◽  
pp. 109-126 ◽  
Author(s):  
Ishrat Zahan ◽  
R Nasrin ◽  
M A Alim

A numerical analysis has been conducted to show the effects of magnetohydrodynamic (MHD) and Joule heating on heat transfer phenomenon in a lid driven triangular cavity. The heat transfer fluid (HTF) has been considered as water based hybrid nanofluid composed of equal quantities of Cu and TiO2 nanoparticles. The bottom wall of the cavity is undulated in sinusoidal pattern and cooled isothermally. The left vertical wall of the cavity is heated while the inclined side is insulated. The two dimensional governing partial differential equations of heat transfer and fluid flow with appropriate boundary conditions have been solved by using Galerkin's finite element method built in COMSOL Multyphysics. The effects of Hartmann number, Joule heating, number of undulation and Richardson number on the flow structure and heat transfer characteristics have been studied in details. The values of Prandtl number and solid volume fraction of hybrid nanoparticles have been considered as fixed. Also, the code validation has been shown. The numerical results have been presented in terms of streamlines, isotherms and average Nusselt number of the hybrid nanofluid for different values of governing parameters. The comparison of heat transfer rate by using hybrid nanofluid, Cu-water nanofluid,  TiO2 -water nanofluid and clear water has been also shown. Increasing wave number from 0 to 3 enhances the heat transfer rate by 16.89%. The enhanced rate of mean Nusselt number for hybrid nanofluid is found as 4.11% compared to base fluid.


Author(s):  
A. O¨zer Arnas ◽  
Daisie D. Boettner ◽  
Michael J. Benson ◽  
Bret P. Van Poppel

The topic of condensation heat transfer is usually included in a chapter on Boiling and Condensation in most Heat Transfer textbooks. The assumptions made are those of laminar liquid film with constant thermo-physical properties, uniform vapor temperature equal to the saturation temperature of the vapor, negligible shear at the liquid-vapor interface, and negligible momentum and energy transfer by advection in the condensate film. The results presented are normally for the film thickness, the local convective heat transfer coefficient, and the Nusselt number. However, no means are presented to the student to determine if all of these simplifying assumptions are actually satisfied for a given problem. This investigation clarifies these points to improve teaching of the material and understanding by the student at the undergraduate and graduate level.


Sign in / Sign up

Export Citation Format

Share Document