scholarly journals Development of Hot Wire TIG Welding Methods Using Pulsed Current to Heat Filler Wire-Research on Pulse Heated Hot Wire TIG Welding Processes (Report 1)-

2003 ◽  
Vol 21 (3) ◽  
pp. 362-373 ◽  
Author(s):  
Katsuyoshi HORI ◽  
Hiroshi WATANABE ◽  
Toshiharu MYOGA ◽  
Kazuki KUSANO
2018 ◽  
Vol 1148 ◽  
pp. 193-203
Author(s):  
Ramu Garugubilli ◽  
M.L. Sramika ◽  
V. Pradeep Kumar

Aluminum alloys (Al–Si–Mg alloys) have gathered wide acceptance in the fabrication of light weight structures requiring high strength-to weight ratio, such as transportable bridge girders. An improvised method is Pulsed current tungsten inert gas (PCTIG) welding (Developed in 1950s). The pulse current is more frequently used in manual welding because it has a lot of advantages in comparison to direct current. The main advantages are improved bead contour, greater tolerance to heat sink variations, lower heat input requirements, reduced residual stresses and distortion. In the present work to study the effect of PCTIG welding over continuous current TIG welding, work plates of 6 mm thickness have been used as the base material for preparing single pass welded joints. Single V butt joint configuration has been prepared for joining the plates. The filler metal used for joining the plates is AA 5356 (Al–5Mg (wt%)) grade aluminum alloy The preferred welding processes of moderately high strength aluminum alloy are frequently tungsten inert gas welding (TIGW) process. Two different welding techniques are used to fabricate the joints and they are: (i) continuous current TIG welding (CCGTAW) (ii) pulse current TIG welding (PCGTAW) processes. Argon (99.99% pure) has to use as the shielding gas. This report presents the effect of pulsed current TIG welding on mechanical behavior of high strength aluminum alloy joints, and studying about the grain refinement of weld bead, conducting the mechanical tests such as tensile test, impact test, and hardness test. Pulsed current welded joints have given superior mechanical properties comparative to continue current welded joints. PCTIG welded joints given high tensile strength, hardness and impact strength values. Current pulsing leads to relatively finer structure.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
T. Sathish ◽  
S. Tharmalingam ◽  
V. Mohanavel ◽  
K. S. Ashraff Ali ◽  
Alagar Karthick ◽  
...  

Aluminium and its alloys play a significant role in engineering material applications due to its low weight ratio and superior corrosion resistance. The welding of aluminium alloy is challenging for the normal conventional arc welding processes. This research tries to resolve those issues by the Tungsten Inert Gas welding process. The TIG welding method is an easy, friendly process to perform welding. The widely applicable wrought aluminium AA8006 alloy, which was not considered for TIG welding in earlier studies, is considered in this investigation. For optimizing the number of experiments, the Taguchi experimental design of L9 orthogonal array type experimental design/plan was employed by considering major influencing process parameters like welding speed, base current, and peak current at three levels. The welded samples are included to investigate mechanical characterizations like surface hardness and strengths for standing tensile and impact loading. The results of the investigation on mechanical characterization of permanent joint of aluminium AA8006 alloy TIG welding were statistically analyzed and discussed. The 3D profilometric images of tensile-tested specimens were investigated, and they suggested optimized process parameters based on the result investigations.


2011 ◽  
Vol 528 (22-23) ◽  
pp. 6971-6980 ◽  
Author(s):  
T. Sakthivel ◽  
M. Vasudevan ◽  
K. Laha ◽  
P. Parameswaran ◽  
K.S. Chandravathi ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 451
Author(s):  
Martin A. Kesse ◽  
Eric Buah ◽  
Heikki Handroos ◽  
Godwin K. Ayetor

Recent developments in artificial intelligence (AI) modeling tools allows for envisaging that AI will remove elements of human mechanical effort from welding operations. This paper contributes to this development by proposing an AI tungsten inert gas (TIG) welding algorithm that can assist human welders to select desirable end factors to achieve good weld quality in the welding process. To demonstrate its feasibility, the proposed model has been tested with data from 27 experiments using current, arc length and welding speed as control parameters to predict weld bead width. A fuzzy deep neural network, which is a combination of fuzzy logic and deep neural network approaches, is applied in the algorithm. Simulations were carried out on an experimental test dataset with the AI TIG welding algorithm. The results showed 92.59% predictive accuracy (25 out of 27 correct answers) as compared to the results from the experiment. The performance of the algorithm at this nascent stage demonstrates the feasibility of the proposed method. This performance shows that in future work, if its predictive accuracy is improved with human input and more data, it could achieve the level of accuracy that could support the human welder in the field to enhance efficiency in the welding process. The findings are useful for industries that are in the welding trade and serve as an educational tool.


1971 ◽  
Vol 40 (7) ◽  
pp. 666-674
Author(s):  
Isao Masumoto ◽  
Takeshi Shinoda

1987 ◽  
Vol 1 (8) ◽  
pp. 736-742 ◽  
Author(s):  
S Ueguri ◽  
Y Tabata ◽  
T Shimizu ◽  
T Mizuno

Sign in / Sign up

Export Citation Format

Share Document