scholarly journals Development of Fluid-Elastoplastic Hybrid Particle Method for Tsunami Simulation due to Slope Failure

Author(s):  
Hiroyuki IKARI ◽  
Hitoshi GOTOH ◽  
Hidefumi YODOSHI
2006 ◽  
Vol 128 (5) ◽  
pp. 921-930 ◽  
Author(s):  
Eiji Ishii ◽  
Toru Ishikawa ◽  
Yoshiyuki Tanabe

We developed a method of hybrid particle/cubic interpolated propagation (CIP) to predict the motion of micro- and macrofree surfaces within gas-liquid flows. Microfree surfaces (smaller than the grid sizes) were simulated with the particle method, and macrofree surfaces (larger than the grid sizes) were simulated with the grid method (CIP is a kind of grid method). With the hybrid, velocities given by the advection part of the particle method were combined with those given by the advection part of CIP. Furthermore, the particles used with the particle method were assigned near the macrofree surfaces by using the volume fraction of liquid that was calculated with CIP. The method we developed was used to predict the collapse of a liquid column. Namely, it was simultaneously able to predict both large deformation in the liquid column and its fragmentation, and the predicted configurations for the liquid column agreed well with the experimentally measured ones. It was also used to predict the behavior of liquid films at the outlet of a fuel injector used for automobile engines. The particle method in the simulation was mainly used for liquid films in the air region and the grid method was used for the other regions to shorten the computational time. The predicted profile of the liquid film was very sharp in the air region where the liquid film became thinner than the grid sizes; there was no loss of liquid film with numerical diffusion.


2018 ◽  
Vol 195 ◽  
pp. 05013
Author(s):  
Raden Harya Dananjaya

Tsunami is a natural disaster that have resulted in dreadful damages over time. Extensive researches have been conducted to scrutinize and counteract the natural hazard using three major research components which are: field monitoring, laboratory tests, and numerical methods. However, laboratory tests are high-priced and arduous. Numerical simulation overcomes these drawbacks and can be utilized in collaboration with laboratory tests. Recently, newly introduced meshless Lagrangian particle method called Smoothed Particle Hydrodynamics (SPH) has gained attention. In this paper, SPH method has been employed to simulate tsunami. A SPH code is developed from scratch. To validate the code, a traditional dam break simulation is conducted. Lastly, a tsunami model is simulated using the developed SPH code and compared with past experimental data. The results indicate that the code is in accordance with previous experimental data and numerical simulation. Whereby, there’s been a slight deviation arises in tsunami simulation. The velocity of the code is relatively less to that of the experimental data. Such inconsistencies could emerge due to a number of reasons, i.e. the choice of the SPH parameters and model simplification. Generally, the developed SPH code had a satisfactory performance to model tsunami and dam-break problem.


AIAA Journal ◽  
2005 ◽  
Vol 43 (7) ◽  
pp. 1626-1628
Author(s):  
Hao Huang ◽  
Sunil Saigal ◽  
Carl T. Dyka

Sign in / Sign up

Export Citation Format

Share Document