NORMAL VALUES OF THE VERTEBRAL BODY AND INTERVERTEBRAL DISK INDEX IN ADULTS

1972 ◽  
Vol 114 (2) ◽  
pp. 411-414 ◽  
Author(s):  
MARCO E. BRANDNER
1986 ◽  
Vol 3 (6) ◽  
pp. 901-910 ◽  
Author(s):  
Rickard Nyman ◽  
Anders Ericsson ◽  
Anders Hemmingsson ◽  
Bo Jung ◽  
Göran Sperber ◽  
...  

2000 ◽  
Vol 36 (4) ◽  
pp. 348-358 ◽  
Author(s):  
RJ Lemarie ◽  
SC Kerwin ◽  
BP Partington ◽  
G Hosgood

Cervical intervertebral disk disease is commonly treated surgically by ventral decompression through a ventral slot. Nine dogs with documented vertebral subluxation following surgical creation of a ventral slot are reported. The location of the subluxation was at the fourth cervical (C4) to fifth cervical (C5) intervertebral space in two dogs, C5 to sixth cervical (C6) intervertebral space in four dogs, and C6 to seventh cervical (C7) intervertebral space in three dogs. The ventral slot width to vertebral body width ratio ranged from 0.39 to 0.80, with the ratio being 0.50 or greater in seven of eight cases evaluated radiographically. Surgical reduction and stabilization were performed in seven of nine dogs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Julia Hart ◽  
Stefan Rupp ◽  
Katinka Hartmann ◽  
Carolin Fischer ◽  
Pia Düver ◽  
...  

Objective: To objectively assess the cervical paraspinal musculature of French bulldogs (FBs) using computed tomography (CT) scan-based measurements, outline differences in other breeds published in the literature, and investigate the potential influence of its cervical paraspinal musculature on predisposed sites for intervertebral disk disease.Animals: Thirty FBs that underwent CT scans of the cervical spine from the skull to C7/T1 were enrolled. Fifteen dogs were patients suffering from intervertebral disk herniation (IVDH group), and 15 dogs underwent CT scans due to brachycephalic obstructive airway syndrome (BOAS group).Methods: At the level of each cervical intervertebral disk from C2/C3 to C7/T1, measurements were performed and statistically analyzed. On the sagittal CT scan reconstruction, the height ratio of the dorsal to ventral paraspinal musculature and the angle of the disk axis to vertebral body length were assessed. On the transverse plane, the area ratio of the dorsal and ventral paraspinal musculature and the ratio of force moments were determined at each intervertebral disk level. Finally, ratios were compared to the values of Labrador retrievers and dachshunds published by Hartmann et al. (1).Results: Comparing the two FB groups, one significant difference was detected in the mean height ratio of the dorsal to ventral paraspinal musculature at the level of C5/C6 (P = 0.0092) and C6/C7 (P = 0.0076), with IVDH FBs having the more prominent dorsal paraspinal musculature. At the level of C3/C4, a significantly less prominent dorsal paraspinal musculature in FBs than in dachshunds (P = 0.0058) and a significantly steeper disk to vertebral body angulation were observed (P = 0.0005).Conclusion: Although some incidental differences were found, most parameters did not significantly differ between the BOAS and IVDH FBs. Significant conformational differences in the cervical paraspinal musculature and disk to vertebral body length angulation were found between FBs and two other breeds (chondrodystrophic and non-chondrodystrophic). This study's findings suggest that the paraspinal musculature is an additional biomechanical influencing factor on the preferential sites of IVDH in the cervical spine and that other major factors exist in IVDH development, especially in FBs.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Jin Luo ◽  
Michael A. Adams ◽  
Patricia Dolan

Osteoporotic vertebral fractures often lead to pain and disability. They can be successfully treated, and possibly prevented, by injecting cement into the vertebral body, a procedure known as vertebroplasty. Kyphoplasty is similar, except that an inflatable balloon is used to restore vertebral body height before cement is injected. These techniques are growing rapidly in popularity, and a great deal of recent research, reviewed in this paper, has examined their ability to restore normal mechanical function to fractured vertebrae. Fracture reduces the height and stiffness of a vertebral body, causing the spine to assume a kyphotic deformity, and transferring load bearing to the neural arch. Vertebroplasty and kyphoplasty are equally able to restore vertebral stiffness, and restore load sharing towards normal values, although kyphoplasty is better at restoring vertebral body height. Future research should optimise these techniques to individual patients in order to maximise their beneficial effects, while minimising the problems of cement leakage and adjacent level fracture.


Sign in / Sign up

Export Citation Format

Share Document