scholarly journals FOLIC ACID, VITAMIN B12, AND DNA METHYLATION: AN UPDATE.

Author(s):  
Bhongir Aparna Varma ◽  
Srilatha Bashetti ◽  
Rajagopalan Vijayaraghavan ◽  
Kumar Sai Sailesh

 Epigenetics is one of the exciting and fastest expanding fields of biology; this is above genetics. Methylation is the process involved in the transfer of methyl group to amino acids, proteins, enzymes and DNA of all the cells, and tissues of the body. During cell-division low folate availability may result in decreased production of thymidine wherein uracil may be substituted in the place of thymidine in the DNA sequence. It was reported that folate and Vitamin B12 restricted diet resulted in aberrant methylation patterns. The current review was undertaken to explore the role of folic acid and Vitamin B12 in DNA methylation.

Author(s):  
Bhongir Aparna Varma ◽  
Srilatha Bashetti ◽  
Rajagopalan Vijayaraghavan ◽  
Kumar Sai Sailesh

 Epigenetics is one of the exciting and fastest expanding fields of biology; this is above genetics. Methylation is the process involved in the transfer of methyl group to amino acids, proteins, enzymes and DNA of all the cells, and tissues of the body. During cell-division low folate availability may result in decreased production of thymidine wherein uracil may be substituted in the place of thymidine in the DNA sequence. It was reported that folate and Vitamin B12 restricted diet resulted in aberrant methylation patterns. The current review was undertaken to explore the role of folic acid and Vitamin B12 in DNA methylation.


2021 ◽  
pp. 123-136
Author(s):  
Paulina Łoboś ◽  
Bożena Regulska-Ilow

DNA methylation is a reversible epigenetic modification that plays a crucial role in transcriptional gene silencing. Both excessive (hypermethylation) and reduced DNA methylation (hypomethylation) can contribute to the disturbance of the proper course of many important processes in the human body. The aim of the study was to discuss the relationship between methyl nutrients and the DNA methylation process in the course of selected diseases in adults. Methyl nutrients include folates (vitamin B9), riboflavin (vitamin B2), cobalamin (vitamin B12), pyridoxine (vitamin B6) and choline (vitamin B4), as well as methionine and betaine. These substances play the role of both substrates and cofactors in transformations related to one-carbon metabolism. The deficiency of methyl nutrients in the body can lead to disturbances in SAM synthesis, which is the primary donor of methyl groups in the DNA methylation process. However, the mechanism explaining the discussed relationship has not been fully explained so far. Both the concentration in the body and the intake of folate and vitamin B12 in the diet can, to some extent, have an effect on the level of DNA methylation in healthy people. In comparison, data on the effect of excessive intake of vitamin B12 in the diet on the risk of cancer development are inconsistent. An adequate betaine and choline intake in the diet might not only affect the overall improvement of the DNA methylation profile, but, to some extent, also reduce the risk of cancer, the effect of which can depend on the content of folic acid in the body. Research results on the effect of supplementation of methyl nutrients on the DNA methylation process are inconclusive. It is therefore necessary to conduct further research in this area to draw clear conclusions.


PLoS ONE ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. e17706 ◽  
Author(s):  
Asmita Kulkarni ◽  
Kamini Dangat ◽  
Anvita Kale ◽  
Pratiksha Sable ◽  
Preeti Chavan-Gautam ◽  
...  

Metabolites ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 298
Author(s):  
Fabio Coppedè ◽  
Andrea Stoccoro ◽  
Pierpaola Tannorella ◽  
Lucia Migliore

DNA methyltransferase 1 (DNMT1) is responsible for the maintenance of DNA methylation patterns during cell division. Several human diseases are characterized by impaired DNMT1 gene methylation, but less is known about the factors that regulate DNMT1 promoter methylation levels. Dietary folates and related B-vitamins are essential micronutrients for DNA methylation processes, and we performed the present study to investigate the contribution of circulating folate, vitamin B12, homocysteine, and common polymorphisms in folate pathway genes to the DNMT1 gene methylation levels. We investigated DNMT1 gene methylation levels in peripheral blood DNA samples from 215 healthy individuals. All the DNA samples were genotyped for MTHFR 677C > T (rs1801133) and 1298A > C (rs1801131), MTRR 66A > G (rs1801394), MTR 2756A > G (rs1805087), SLC19A1 (RFC1) 80G > A (rs1051266), TYMS 28-bp tandem repeats (rs34743033) and 1494 6-bp insertion/deletion (indel) (rs34489327), DNMT3A -448A > G (rs1550117), and DNMT3B -149C > T (rs2424913) polymorphisms. Circulating homocysteine, folate, and vitamin B12 levels were available from 158 of the recruited individuals. We observed an inverse correlation between plasma homocysteine and DNMT1 methylation levels. Furthermore, both MTR rs1805087 and TYMS rs34743033 polymorphisms showed a statistically significant effect on DNMT1 methylation levels. The present study revealed several correlations between the folate metabolic pathway and DNMT1 promoter methylation that could be of relevance for those disorders characterized by altered DNA methylation.


PEDIATRICS ◽  
1972 ◽  
Vol 50 (4) ◽  
pp. 584-589
Author(s):  
Ambadas Pathak ◽  
Herman A. Godwin ◽  
Luis M. Prudent

The relationship of serum vitamin B12 and folic acid was studied in 24 premature infants. In 14 of the 24, low serum vitamin B12 values were found around 40 days of age. Serum folic acid concentrations were less frequently depressed and were usually associated with normal red cell folate values. No correlation between hematocrits and vitamin B12 or folate levels was found. It is suggested that low concentrations of serum folate and vitamin B12 result from low dietary intake coupled with increased demand by the prematurely born infant.


2019 ◽  
Vol 70 (7) ◽  
pp. 2566-2570
Author(s):  
Dragos Botezatu ◽  
Cristina Popescu ◽  
Andrei-Dan Korodi ◽  
Cristian Furau ◽  
Gheorghe Furau ◽  
...  

Male infertility is a common and complex problem affecting 1 out of 20 men. Despite extensive research in this area, in many cases, the underlying causes are unknown. Epigenetic changes control a series of processes within the body, including male fertility. Classification of infertile men using a more detailed analysis of DNA methylation patterns could reveal a new level of low rates of fertilization, implantation, or pregnancy. In this context, it seemed to us to use the techniques available to evaluate the degree of global methylation of DNA in infertile patients who have modified sperm counts, but also those who apparently do not have a clear cause of infertility. For this we used the Quest 5mC-Zymoresaerch-ELISA kit that can detect within about 5 hours the global level of genome methylation. Claims on which common illnesses have an epigenetic base are still open to speculation, but if true, it can imprint a new direction in medicine. Our data, although from a pilot study, are consistent with those in the literature. A recent study has shown that DNA methylation levels were significantly higher in oligoasthenoteratozoospermia patients than in the control group and the increase in global DNA methylation and histone retention in men with oligoasthenoteratozoospermia.


2018 ◽  
Author(s):  
Yi Jin Liew ◽  
Emily J. Howells ◽  
Xin Wang ◽  
Craig T. Michell ◽  
John A. Burt ◽  
...  

MainThe notion that intergenerational or transgenerational inheritance operates solely through genetic means is slowly being eroded: epigenetic mechanisms have been shown to induce heritable changes in gene activity in plants1,2and metazoans1,3. Inheritance of DNA methylation provides a potential pathway for environmentally induced phenotypes to contribute to evolution of species and populations1–4. However, in basal metazoans, it is unknown whether inheritance of CpG methylation patterns occurs across the genome (as in plants) or as rare exceptions (as in mammals)4. Here, we demonstrate genome-wide intergenerational transmission of CpG methylation patterns from parents to sperm and larvae in a reef-building coral. We also show variation in hypermethylated genes in corals from distinct environments, indicative of responses to variations in temperature and salinity. These findings support a role of DNA methylation in the transgenerational inheritance of traits in corals, which may extend to enhancing their capacity to adapt to climate change.


2019 ◽  
Vol 18 (1) ◽  
pp. 50-59 ◽  
Author(s):  
Aneta Myszczyszyn ◽  
Rafał Krajewski ◽  
Monika Ostapów ◽  
Lidia Hirnle

AbstractIntroduction. Folic acid is a compound classified as B group vitamins. In the body it is subject to processes that transfer its inactive form into a form responsible for biological effects of folic acid, i.e. 5-methyltetrahydrofolate (5-MTHF). It is, in particular, responsible for processes of the correct biosynthesis of purine and pyridine bases present in the formation of DNA and RNA molecules. Humans do not synthesize the endogenous form of folic acid; therefore, it is vital to supplement this vitamin in its natural form or multivitamin preparations. The most folic acid is found in the green leafy vegetables (spinach, peas, asparagus) and in offal (liver). An adequate supply of folic acid is especially indicated in pregnant women with a reduced amount of folic acid due to its use by an intensively developing foetus. The recommended dose of folic acid during this period is 0.4 mg/24h and this dose varies depending on the patient’s and her family’s medical history. The updated state of knowledge on the role of vitamin B9 in the body has been presented. The importance of its supplementation in specific clinical cases was analyzed.Summary. Many studies indicate an important role of the folic acid in the prevention of congenital defects of the nervous, cardiovascular and urogenital systems. Its deficiency increases the risk of complications in pregnancy, such as recurrent miscarriages, pre-eclampsia or postpartum haemorrhage. For this reason, a prophylactic folic acid supplementation is recommended, in women with increased risk of its deficiency, in particular.


Sign in / Sign up

Export Citation Format

Share Document