scholarly journals INDANYL ANALOGS AS POTENTIAL ANTIMICROBIAL AGENTS

Author(s):  
Sudip Kumar Mandal

 Objective: The wide variety of biological activities of different indane derivatives makes them an interesting moiety in the field of medicinal chemistry. The objective of the study was to identify and develop novel antimicrobial agents from indanyl analogs.Methods: Recently synthesized indanyl analogs (4a-c and 5a-o) were examined against various pathogenic microorganisms (Gram-positive and Gram-negative bacteria and fungi) using serial dilution method. These analogs were found to possess antibacterial and antifungal activities with minimum inhibitory concentration values ranging between 1.56 and 100 μg/mL.Results: The results revealed that the entire compounds showed mild-to-moderate antibacterial activities and moderate-to-excellent antifungal activities against the pathogenic microorganisms as compared to the standard drugs ciprofloxacin and fluconazole, respectively. Compounds 4a, 5a, 5b, 5d, 5e, 5i, and 5j exhibited antifungal activities superior to the reference drug.Conclusion: Based on the structure-activity relationship, it can conclude that the indan-3-oxo-1-acetic acid moiety is essential for the activities and lipophilic alkoxy substituents on indane ring have enhanced the biological activity. Further, structure-activity relationship studies of the compounds 4a, 5a, and 5b are needful to find the new lead as antimicrobial agent.

Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3913 ◽  
Author(s):  
Xiaoyuan Song ◽  
Ganjun Yuan ◽  
Peibo Li ◽  
Sheng Cao

Antimicrobial resistance has been seriously threatening human health, and discovering new antimicrobial agents from the natural resource is still an important pathway among various strategies to prevent resistance. Guanidine-containing polyhydroxyl macrolides, containing a polyhydroxyl lactone ring and a guanidyl side chain, can be produced by many actinomycetes and have been proved to possess many bioactivities, especially broad-spectrum antibacterial and antifungal activities. To explore the potential of these compounds to be developed into new antimicrobial agents, a review on their structural diversities, spectroscopic characterizations, bioactivities, acute toxicities, antimicrobial mechanisms, and the structure-activity relationship was first performed based on the summaries and analyses of related publications from 1959 to 2019. A total of 63 guanidine-containing polyhydroxyl macrolides were reported, including 46 prototype compounds isolated from 33 marine and terrestrial actinomycetes and 17 structural derivatives. Combining with their antimicrobial mechanisms, structure-activity relationship analyses indicated that the terminal guanidine group and lactone ring of these compounds are vital for their antibacterial and antifungal activities. Further, based on their bioactivities and toxicity analyses, the discovery of guanidyl side-chain targeting to lipoteichoic acid of Staphylococcus aureus indicated that these compounds have a great potency to be developed into antimicrobial and anti-inflammatory drugs.


2019 ◽  
Vol 97 (7) ◽  
pp. 568-575 ◽  
Author(s):  
Ana Carolina Ferreira Soares ◽  
Priscilla Mendonça Matos ◽  
Herbert Júnior Dias ◽  
Gabriela de Paula Aguiar ◽  
Eliene Silvério dos Santos ◽  
...  

The search for new antibacterial agents and a better comprehension of substances with antimicrobial behavior is mandatory nowadays due to the serious public health problem of infection diseases. In the present work, 30 diterpenes were studied, with 2 natural derivatives, named ent-16-kauren-19-oic acid and ent-pimara-8(14),15-dien-19-oic acid, and 28 semi-synthetic derivatives. The natural diterpenes were isolated from Mikania glomerata and Viguiera arenaria, respectively. All diterpenes were submitted to antimicrobial assays against six different Gram-positive microorganisms to better understand the structure–activity relationship of antimicrobial diterpenes. The semi-synthetic derivatives were all obtained from the two natural derivatives by structural modifications, mainly esterification reactions. Both natural derivatives, together with the derivative ent-8(14)-pimaren-19-oic acid, displayed the most relevant antibacterial activities, with minimal inhibitory concentration (MIC) values that were less than 10 μg mL–1 for most pathogens; thus, they were considered promising antimicrobial agents. Moreover, in light of the hypothesis of Urzúa and colleagues, several considerations about the structure–activity relationship of antimicrobial diterpenes could be stated.


2016 ◽  
Vol 25 (6) ◽  
pp. 1274-1285 ◽  
Author(s):  
Juan M. Sánchez-Calvo ◽  
Gara R. Barbero ◽  
Guillermo Guerrero-Vásquez ◽  
Alexandra G. Durán ◽  
Mariola Macías ◽  
...  

Author(s):  
Ebuka Leonard Onyeyilim ◽  
Mercy Amarachi Ezeokonkwo ◽  
David Izuchukwu Ugwu ◽  
Chiamaka Peace Uzoewulu ◽  
Florence Uchenna Eze ◽  
...  

: Carbohydrazides and their Schiff bases are important class of heterocycles that are not only employed in the area of organic chemistry, but also have tremendous applications in physical and inorganic chemistry. A series of potential bioactive compounds, containing carbohydrazide functionality and their hydrazone derivatives have been synthesized and screened for antibacterial, anticancer, antifungal and anti-inflammatory etc. This brief review discloses some synthetic route to so many reported carbohydrazides, their Schiff bases, their biological activities and their structure activity relationship.


2020 ◽  
Vol 20 (1) ◽  
pp. 12-23 ◽  
Author(s):  
Nandini Pathak ◽  
Ekta Rathi ◽  
Nitesh Kumar ◽  
Suvarna G. Kini ◽  
C. Mallikarjuna Rao

: Benzothiazole is an organic compound bearing a heterocyclic nucleus (thiazole) which imparts a broad spectrum of biological activities to it. The significant and potent activity of benzothiazole moiety influenced distinctively by nature and position of substitutions. This review summarizes the effect of various substituents in recent trends and approaches to design and develop novel benzothiazole derivatives for anticancer potential in different cell lines by interpreting the Structure- Activity Relationship (SAR) and mechanism of action of a wide range of derivatives. The list of derivatives is categorized into different groups and reviewed for their anticancer activity. The structure-activity relationship for the various derivatives revealed an excellent understanding of benzothiazole moiety in the field of cancer therapy against different cancer cell line. Data obtained from the various articles showed the potential effect of benzothiazole moiety and its derivatives to produce the peculiar and significant lead compound. The important anticancer mechanisms found are tyrosine kinase inhibition, topoisomerase inhibition and induction of apoptosis by Reactive Oxygen Species (ROS) activation. Therefore, the design and development of novel benzothiazole have broad scope in cancer chemotherapy.


2012 ◽  
Vol 7 (1) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Mi Kyoung Kim ◽  
Jun Cheol Park ◽  
Youhoon Chong

The aim of this study was to investigate the role of the aromatic substituents of the curcumin scaffold on the antibacterial activity of the resulting curcumin analogues. Six curcumin analogues with different aromatic substituents were prepared and their antibacterial activities were evaluated against two Gram-positive and four Gram-negative bacteria. The structure-activity relationship study demonstrated that antibacterial activity of the curcumin analogues was critically dependent upon the aromatic hydroxyl group. Thus, hydroxycurcumin with an additional aromatic hydroxyl group on the curcumin scaffold showed antibacterial activity against all six pathogens tested and it remained effective even against ampicillin-resistant Enterobacter cloacae. Along with the previously reported antioxidative effect, the broad-spectrum antibacterial activity of the hydroxycurcumin warrants further investigation of its biological activity as well as extensive structure-activity relationship study of the curcumin analogues with various aromatic substituents.


Sign in / Sign up

Export Citation Format

Share Document