scholarly journals DEVELOPMENT AND VALIDATION OF UV-SPECTROPHOTOMETRIC METHOD FOR ESTIMATION OF HYDROQUINONE IN BULK, MARKETED CREAM AND PREAPARED NLC FORMULATION

2017 ◽  
Vol 9 (5) ◽  
pp. 102
Author(s):  
Sukhjinder Kaur ◽  
Taranjit Kaur ◽  
Gurdeep Kaur ◽  
Shivani Verma

Objective: The aim of the present work was to develop a simple, rapid, accurate and economical UV-visible spectrophotometric method for the determination of hydroquinone (HQ) in its pure form, marketed formulation as well as in the prepared nanostructured lipid carrier (NLC) systems and to validate the developed method.Methods: HQ was estimated at UV maxima of 289.6 nm in pH 5.5 phosphate buffer using UV-Visible double beam spectrophotometer. Following the guidelines of the International Conference on Harmonization (ICH), the method was validated for various analytical parameters like linearity, precision, and accuracy robustness, ruggedness, limit of detection, quantification limit, and formulation analysis.Results: The obtained results of the analysis were validated statistically. Recovery studies were performed to confirm the accuracy of the proposed method. In the developed method, linearity over the concentration range of 5-40 μg/ml of HQ was observed with the correlation coefficient of 0.998 and found in good agreement with Beer Lambert’s law. The precision (intra-day and inter-day) of the method was found within official RCD limits (RSD<2%).Conclusion: The sensitivity of the method was assessed by determining the limit of detection and limit of quantification. It could be concluded from the results obtained that the purposed method for estimation of HQ in pure form, in the marketed ointment and in the prepared NLC-formulation was simple, rapid, accurate, precise and economical. It can be used successfully in the quality control of pharmaceutical formulations and for the routine laboratory analysis.

Drug Research ◽  
2020 ◽  
Vol 70 (09) ◽  
pp. 417-423
Author(s):  
Beena Kumari ◽  
Aparna Khansili

Abstract Background Vildagliptin is an antidiabetic agent, belongs to the dipeptidyl peptidase IV (DPP-4) inhibitors. Objective The aim of investigation was to develop a simple UV-visible Spectrophotometric method for the determination of vildagliptin in its pure form and pharmaceutical formulations, further to validate the developed method. Material and Methods Vildagliptin was estimated using UV-Visible double beam spectrophotometer at the wavelength of maximum absorption (210 nm) in acidic medium containing 0.1N HCl. The drug was characterized by melting point, Differential Scanning Calorimetry (DSC), and Fourier Transform Infra-Red (FTIR) techniques. The analysis of the drug was carried out by novel UV-Visible method which was validated analytical parameters like linearity, precision, and accuracy as per guidelines laid down by International Conference on Harmonization (ICH). Result Melting point of drug was found 154°C which is corresponds to its actual melting range. Similarly by the interpretation of spectra the drug was confirmed. The linear response for concentration range of 5–60 µg/ml of vildagliptin was recorded with regression coefficient 0.999. The accuracy was found between 98–101%. Precision for intraday and interday was found to be 1.263 and 1.162 respectively, which are within the limits. To establish the sensitivity of the method, limit of detection (LOD) and limit of quantification (LOQ) were determined which were found to be 0.951 µg/ml and 2.513 µg/ml respectively. Conclusion The UV method developed and validated for vildagliptin drug was found to be linear, accurate, precise and economical which can be used for the testing of its pharmaceutical formulations.


2008 ◽  
Vol 33 (3) ◽  
pp. 7-12 ◽  
Author(s):  
M. A. Gotardo ◽  
L. S. Lima ◽  
R. Sequinel ◽  
J. L. Rufino ◽  
L. Pezza ◽  
...  

A simple, rapid and sensitive spectrophotometric method has been developed for the determination of methyldopa in pharmaceutical formulations. The method is based on the reaction between tetrachloro-p-benzoquinone (p-chloranil) and methyldopa, accelerated by hydrogen peroxide (H2O2), producing a violet-red compound (λmax = 535 nm) at ambient temperature (25.0 ± 0.2 ºC). Experimental design methodologies were used to optimize the measurement conditions. Beer's law is obeyed in a concentration range from 2.10 x 10-4 to 2.48 x 10-3 mol L-1 (r = 0.9997). The limit of detection was 7.55 x 10-6 mol L-1 and the limit of quantification was 2.52 x 10-5 mol L-1. The intraday precision and interday precision were studied for 10 replicate analyses of 1.59 x 10-3 mol L-1 methyldopa solution and the respective coefficients of variation were 0.7 and 1.1 %. The proposed method was successfully applied to the determination of methyldopa in commercial brands of pharmaceuticals. No interferences were observed from the common excipients in the formulations. The results obtained by the proposed method were favorably compared with those given by the Brazilian Pharmacopoeia procedure at 95 % confidence level.


Author(s):  
Jaspreet Kaur ◽  
Daljit Kaur ◽  
Sukhmeet Singh

Objective: A simple, accurate, and selective ultraviolet-spectrophotometric method has been developed for the estimation of febuxostat in the bulk and pharmaceutical dosage forms.Method: The method was developed and validated according to International Conference on Harmonization (ICH Q2 R1) guidelines. The developed method was validated statistically with respect to linearity, range, precision, accuracy, ruggedness, limit of detection (LOD), limit of quantitation (LOQ), and recovery. Specificity of the method was demonstrated by applying different stressed conditions to drug samples such as acid hydrolysis, alkaline hydrolysis, oxidative, photolytic, and thermal degradation.Results: The study was conducted using phosphate buffer pH 6.8 and λmax was found to be 312 nm. Standard plot having a concentration range of 1–10 μg/ml showed a good linear relationship with R2=0.999. The LOD and LOQ were found to be 0.118 μg/ml and 0.595 μg/ml, respectively. Recovery and percentage relative standard deviations were found to be 100.157±0.332% and <2%, respectively.Conclusion: Proposed method was successfully applicable to the pharmaceutical formulations containing febuxostat. Thus, the developed method is found to be simple, sensitive, accurate, precise, reproducible, and economical for the determination of febuxostat in pharmaceutical dosage forms.


Author(s):  
Ayya Rajendra Prasad ◽  
Jayanthi Vijaya Ratna

 Objective: The objective of this study was developed and validated a novel, specific, precise, and simple ultraviolet (UV)-spectrophotometric method for the estimation of norfloxacin present in taste masked drug-resin complex.Methods: UV-spectrophotometric determination was performed with ELICO SL 1500 UV-visible spectrophotometer using 0.1 N HCl as a medium. The spectrum of the standard solution was run from 200 to 400 nm range for the determination of absorption maximum (λ max). λ max of norfloxacin was found at 278 nm. The absorbance of standard solutions of 1, 2, 3, 4, and 5 μg/ml of drug solution was measured at an absorption maximum at 278 nm against the blank. Then, a graph was plotted by taking concentration on X-axis and absorbance on Y-axis which gave a straight line. Validation parameters such as linearity and range, selectivity and specificity, limit of detection (LOD) and limit of quantification (LOQ), accuracy, precision, and robustness were evaluated as per the International Conference on Harmonization (ICH) guidelines.Results: Linearity for the UV-spectrophotometric method was noted over a concentration range of 1–5 μg/ml with a correlation coefficient of 0.9995. The LOD and LOQ for norfloxacin were found at 0.39 μg/ml and 1.19 μg/ml, respectively. Accuracy was in between 99.00% and 99.17%. % relative standard deviation for repeatability, intraday precision, and interday precision was found to be 0.600, in between 0.291 and 0.410, and in between 0.682 and 1.439, respectively. The proposed UV spectrophotometric method is found to be robust.Conclusion: The proposed UV-spectrophotometric method was validated according to the ICH guidelines, and results and statistical parameters demonstrated that the developed method is sensitive, precise, reliable, and simple for the estimation of norfloxacin present in taste masked drug-resin complex.


2018 ◽  
Vol 10 (1) ◽  
pp. 74 ◽  
Author(s):  
Ayya Rajendra Prasad ◽  
Bannaravuri Thireesha

Objective: To develop and validate a novel, specific, precise and simple UV-spectrophotometric method for the estimation of lornoxicam present in microsponges.Methods: UV-spectrophotometric determination was performed with Thermo Scientific Evolution 201 UV-Vis spectrophotometer using methanol as a medium. The spectrum of the standard solution was run from 200-400 nm range for the determination of absorption maximum (λ max). λ max of lornoxicam was found at 353 nm. The absorbance of standard solutions of 3, 6, 9, 12 and 15, µg/ml of drug solution was measured at an absorption maximum at 353 nm against the blank. Then a graph was plotted by taking concentration on X-axis and absorbance on Y-axis which gave a straight line. Validation parameters such as linearity and range, selectivity and specificity, LOD and LOQ, accuracy, precision and robustness were evaluated as per ICH guidelines.Results: Linearity for the UV-spectrophotometric method was noted over a concentration range of 3.0-15.0 µg/ml with a correlation coefficient of 0.9995. The limit of detection (LOD) and limit of quantification (LOQ) for lornoxicam was found at 1.26 μg/ml and 3.82 μg/ml respectively. Accuracy was in between 99.21 and 99.60%. % RSD for repeatability, intraday precision and interday precision were found to be 0.473, in between 0.478 and 0.619 and in between 0.855 and 1.818 respectively. The proposed UV method is found to be robust.Conclusion: The proposed UV-Visible spectrophotometric method was validated according to the ICH guidelines and results and statistical parameters demonstrated that the developed method is sensitive, precise, reliable and simple for the estimation of lornoxicam present in microsponges.


2010 ◽  
Vol 35 (3) ◽  
pp. 179-188 ◽  
Author(s):  
P. R. S Ribeiro ◽  
L Pezza ◽  
H. R Pezza

A simple, rapid and sensitive spectrophotometric method for the determination of captopril (CPT) in pharmaceutical formulations is proposed. This method is based on the reduction reaction of ammonium molybdate, in the presence of sulphuric acid, for the group thiol of CPT, producing a green compound (λ max 407 nm). Beer's law is obeyed in a concentration range of 4.60 x 10-4 - 1.84 x 10-3 mol l-1 of CPT with an excellent correlation coefficient (r = 0.9995). The limit of detection and limit of quantification were 7.31 x 10-6 e 2.43 x 10-5 mol l-1 of CPT, respectively. The proposed method was successfully applied to the determination of CPT in commercial brands of pharmaceuticals. No interferences were observed from the common excipients in the formulations. The results obtained by the proposed method were favorably compared with those given by the official reported method at 95 % confidence level.


2018 ◽  
Vol 35 (3) ◽  
pp. 179
Author(s):  
Paulo Roberto Da Silva Ribeiro ◽  
Leonardo Pezza ◽  
Helena Redigolo Pezza

A simple, rapid and sensitive spectrophotometric method for the determination of captopril (CPT) in pharmaceutical formulations is proposed. This method is based on the reduction reaction of ammonium molybdate, in the presence of sulphuric acid, for the group thiol of CPT, producing a green compound (λmax 407 nm). Beer’s law is obeyed in a concentration range of 4.60 x 10-4 – 1.84 x 10-3 mol l-1 of CPT with an excellent correlation coefficient (r = 0.9995). The limit of detection and limit of quantification were 7.31 x 10-6 e 2.43 x 10-5 mol l-1 of CPT, respectively. The proposed method was successfully applied to the determinationof CPT in commercial brands of pharmaceuticals. No interferences were observed from the common excipients in the formulations. The results obtained by the proposed method were favorably compared with those given by the official reported method at 95 % confidence level.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Małgorzata Dołowy ◽  
Alina Pyka

This research study describes the applicability of silica gel 60 RPW18F254plates for the development and validation of new, simple, economic, accurate, and precise RPHPTLC-densitometric method suitable for the quantification of nicotinamide (asVitamin PP) in three marketed preparations. The mobile phase used was methanol-water in volume composition 3 : 7. Detection wavelength was 200 nm. The proposed method was validated according to ICH guidelines and also based on Ferenczi-Fodor and Konieczka reports. Results were found to be linear over a range of 1.00 to 2.00 μg/spot. Limit of detection (LOD) and limit of quantification (LOQ) were 0.15 μg/spot and 0.45 μg/spot, respectively. The percent content of nicotinamide in the investigated preparations was found to be 99.2% (Product 1), 99.3% (Product 2), and 99.4% (Product 3). Developed method is accurate and precise (CV<3%) and may be successfully applied for the quality control of pharmaceutical formulations containing nicotinamide in the presence of its derivatives, such as N,N-diethylnicotinamide, N-methylnicotinamide, and nicotinic acid.


2016 ◽  
Vol 1 (1) ◽  
pp. 36 ◽  
Author(s):  
Neelam Devi ◽  
Sunil Kumar ◽  
Sunny Rajan ◽  
Jagbir Gegoria ◽  
Sheefali Mahant ◽  
...  

Clobetasol 17-propionate is used most potent topical glucocorticoid clinical effective in treatment of topical dermatitis, vitiligo and psoriasis. A rapid, simple, selective and precise UV- Visible Spectrophotometric method has been developed for the determination of Clobetasol 17-Propionate (CP) in bulk forms and dosage formulations. The spectrophotometric detection was carried out at an absorption maximum of 239 nm using ethanol as solvent. The method was validated for specificity, linearity, accuracy, precision, and robustness. The detector response for the CP was linear over the selected concentration range 2 to 40μg/ml with a correlation coefficient of 0.9999. The accuracy was between 99.1 and 101.4 %. The precision of 4μg/ml sample preparation three times in a day (intraday) was 0.1325%. The Limit of Detection (LOD) and Limit of Quantification (LOQ) are 0.84 and 2.55μg/ml, respectively. The recovery of CP was about 101.84%. The results demonstrated that the excipients in the commercial formulation did not interfere with the method and can be conveniently employed for daily routine quality control analysis of CP in bulk drug, marketed formulations.


2017 ◽  
Vol 6 (5) ◽  
pp. 196-199 ◽  
Author(s):  
Shahinaz Mohammed ◽  
Mohammed Adam ◽  
Shaza Shantier

In this study a simple, accurate and precise UV- spectrophotometric method was developed for the estimation of bisoprolol fumarate (BF) in bulk and tablet dosage form. The method was based on measurement of absorbance of BF aqueous solution at 271nm. Validation was conducted in accordance to ICH guidelines. The calibration curve was linear in the concentration range 5-25 µg/mL with correlation coefficient not less than 0.9986. The limit of detection and limit of quantification were 0.22 μg/ml and 0.66 μg/ml, respectively. Intraday and intermediate precision of the developed method were reflected by the low RSD% values (1.19 and 0.854, respectively). The recovery percentage was 105.0 ± 1.3%, n=3. The proposed method was applied for the assay of BF in three different brands


Sign in / Sign up

Export Citation Format

Share Document