scholarly journals ANTIDIABETIC AND ANTIHYPERLIPIDAEMIC ACTIVITY OF NELUMBO NUCIFERA GAERTN ETHANOL SEED EXTRACT IN STREPTOZOTOCIN INDUCED DIABETIC RATS

Author(s):  
Alok Bhardwaj ◽  
Ketan. P. Modi

Objective: The main objective of the study was to investigate the effect of ethanol seed extracts of Nelumbo nucifera Gaertn (Nymphaeaceae) as antihyperglycemic, anti-hyperlipidemic and antioxidant activity in streptozotocin-induced diabetic rats.Methods: Diabetes was induced in wistar albino rats by administration of streptozotocin (single intraperitoneal dose of 60 mg/kg B. W). The ethanol extract of N. nucifera seed at a dose of 200 and 400 mg/kg body weight was administrated at a single dose per day to STZ induced diabetic rats for a period of 42 d. The different pharmacological parameters were evaluated. The effect of ethanol seed extract of N. nucifera on insulin, blood glucose, urea, creatinine, HbA1C, serum protein, albumin, globulin, serum enzymes, serum lipid profiles, lipid peroxides (LPO) and other antioxidant enzymes like catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and reduced glutathione (GSH) were measured in the diabetic rats.Results: In the acute toxicity study ethanol seed extract of Nelumbo nucifera were non-toxic at 2000 mg/kg in rats. The ethanol extract of Nelumbo nucifera seed showed significant reduction in blood glucose (p<0.05), serum enzymes (SGPT, SGOT, ALP) (p<0.05), lipid parameters (TC, TG, VLDL, LDL) (p<0.05) except HDL and significantly increased insulin (p<0.05), HDL (p<0.05), GPx, GSH, SOD and CAT (p<0.05) at the dose of 400 mg/kg when compared with the diabetic-induced control.Conclusion: The present study suggested that the NNSE has significant (p<0.05) antihyperglycemic, antihyperlipidemic and antioxidant activity in STZ induced diabetic rats. These results clearly indicate that Nelumbo nucifera is effective against free radical-mediated diseases, thus replacing the synthetic ones.

Author(s):  
Arockia Jenecius Alphonse A. ◽  
Mohan V. R. ◽  
Doss A.

Objective: The aim of this study was to investigate the effect of ethanol extracts of stem and leaf of Bacolepis nervosa as antihyperglycemic, anti-hyperlipidemic and antioxidant activity in alloxan-induced diabetic rats. Methods: Diabetes was induced in wistar albino rats by administration of alloxan monohydrate (150 mg/kg). The ethanol extract of B. nervosa leaf and stem at a dose of 150 and 300 mg/kg body weight was administrated at a single dose per day to diabetes-induced rats for a period of 14 d. The effect of ethanol extract of B. nervosa leaf and stem on blood glucose, insulin, urea, creatinine, HbA1C, serum protein, albumin, globulin, serum enzymes, serum lipid profiles, lipid peroxidase (LPO) and antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH) were measured in the diabetic rats.Results: The ethanol extract of B. nervosa stem and leaf elicited significant reduction in blood glucose (p<0.001), serum enzymes (SGPT, SGOT, ALP) (p<0.01), lipid parameters (TC, TG, VLDL-LDL, PL) (p<0.01) except HDL-C and significantly increased insulin (p<0.01), HDL-C (p<0.05),, GPx, GSH, SOD and CAT (p<0.05) at the dose of 300 mg/kg when compared with the diabetic-induced control.Conclusion: From the above results, it is concluded that ethanol extracts of B. nervosa leaf and stem possesses significant antihyperglycemic, antihyperlipidemic and antioxidant effect in alloxan induced diabetic rats.


Author(s):  
OLUSAYO A SHORINWA ◽  
GORDON EI EMENU

Objectives: This study investigated the antidiabetic and antihyperlipidemic potential of the ethanol extract of the leaves and stem of Cissus gracillis on alloxan monohydrate-induced diabetic albino rats. Methods: Preliminary phytochemical screening and acute toxicity were carried out. Animals were assigned into seven groups of five rats each. Groups A and B were administered 10 mg/kg each of glibenclamide and atorvastatin respectively, C, D, and E were given 125, 250 and 500 mg/kg of ethanol extract of C. gracillis, respectively, daily for 21 days through oral gavage, group F was diabetic but untreated (diabetic control group), while group G was non-diabetic and untreated which served as the control group. Results: Phytochemical screening revealed the presence of steroids/triterpenoids and carbohydrates. LD50 was above 5000 mg/kg. The extract at 500 mg/kg showed a statistically significant (p<0.05) decrease in blood glucose level when compared with the glibenclamide group on day 21. However, gradual non- significant reduction in blood glucose levels were observed in the extract treated groups on the 7th, 14th, and 21st days of treatment. The administration of ethanol extract of C. gracillis to alloxan-induced diabetic rats produced a decrease in total cholesterol, triglycerides, and low-density lipoproteins comparable to glibenclamide and atorvastatin. Conclusion: The ethanol extract of the leaves and stem of C. gracillis possess a mildly significant antidiabetic and antihyperlipidemic activity.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
C. O. Nwaehujor ◽  
I. I. Ezeigbo ◽  
F. C. Nwinyi

Objective. Mallotus oppositifolius(Geiseler) Müll. Arg. (Euphorbiaceae) is folklorically used to “treat” diabetic conditions in some parts of Nigeria therefore the study, to investigate the extract of the leaves for activities on hyperglycaemia, lipid peroxidation, and increased cholesterol levelsin vivoin alloxan diabetic rats as well as its potential antioxidant activityin vitro.Methods. Albino rats (240–280 g) were given an injection of 120 mg/kg body weight, i.p. of alloxan monohydrate. After 8 days, diabetic animals with elevated fasting blood glucose levels (>9 mmol/L) were considered and selected for the study.Results. Oral treatment with the extract administered every 12 h by gavage at doses of 100, 200, and 400 mg/kg of the extract to the test rats, for 14 days, resulted in a significant dose-dependent decrease in blood glucose levels from 12.82 ± 1.02 mmol/dL to 4.92 ± 2.01 mmol/dL at the highest dose of 400 mg/kg compared to the control drug and glibenclamide as well as attendant significant decline in diabetic rats employed in the study.Conclusion. The extract also showedin vitroconcentration-dependent antioxidant activity following the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric reducing assays. Findings further suggest the presence of active antidiabetic and antioxidant principles inM. oppositifoliusleaves.


1970 ◽  
Vol 2 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Swamamoni Das ◽  
Gayatri Sama

Antidiabetic action of ethanolic extracts of seed and rind of Punica granatum L. was evaluated on alloxan-induced diabetic albino rats. Both the extracts, each at a dose of 200mg/kg/d, were administered orally for two weeks to alloxan-induced diabetic rats. Blood glucose was estimated every week for two consecutive weeks. For evaluation of probable mechanism of action of the extracts, glycogen estimation was carried out in liver, heart and skeletal muscle and effect on adrenaline-induced hyperglycemia was observed. Both the extracts significantly (p<0.05) reduced the rise in blood glucose induced by alloxan, with the rind extract exhibiting significantly (p<0.05) better activity than seed extract. Both the extracts also produced significant (p<0.05) increase in liver glycogen and significantly (p<0.05) reduced adrenaline-induced hyperglycemia. These results support strong antidiabetic action in favor of P. granatum seed and rind extractsKey words: Punica granatum L.; Ethanolic extracts; Antidiabetic; Alloxan. DOI: 10.3329/sjps.v2i1.5810Stamford Journal of Pharmaceutical Sciences Vol.2(1) 2009: 14-21


Ethno pharmacological relevance: Traditionally different parts of Jasminum grandiflorum have been used to treat various ailments, including diabetes. However, antidiabetic potential of Jasminum grandiflorum on animal models of diabetes have not been evaluated. Aim of the study: The objective of this study was to determine antidiabetic potential of ethanol extract of leaves and flowers of Jasminum grandiflorum, and different fractions of the flower extract in rodent model of streptozotocin-induced diabetes. Materials and methods: Ethanol extract of both leaves and flowers of Jasminum grandiflorum were screened for the presence of various phytochemicals followed by acute and sub-acute toxicity in rats. Effect of Jasminum grandiflorum leaf and flower extracts on blood glucose level in normal albino rats, in glucose-overloaded healthy albino rats, and in streptozotocininduced diabetic rats was evaluated. Furthermore, based on preliminary results, fractionalization of the flower extract was carried out using petroleum ether, ethyl acetate, methanol, and chloroform. Different fractions were further tested for hypoglycemic activity in streptozotocin-induced diabetic rats. Results: Preliminary phytochemical evaluation suggested presence of various antidiabetic metabolites in both the extracts and were found to safe up to 5000 mg/kg dose. Flower extract (500 mg/kg, p.o.) demonstrated significant hypoglycemic effect than leaf extract (500 mg/kg, p.o.) in normal rats, glucose-overloaded rats, and streptozotocin-induced diabetic rats when compared to control. Long-term effect of different fractions of ethanol extract of Jasminum grandiflorum flowers in streptozotocin model suggested that all four fractions were able to reduce blood glucose level in a time-dependent manner at 200 mg/kg dose with chloroform fraction being highly significant (p<0.001) amongst all when compared to diabetic untreated rats. Chloroform isolate from Jasminum grandiflorum flowers demonstrated enhanced glucose uptake and dosedependent cytotoxicity in L6 cell line. Conclusion: The ethanol extract of Jasminum grandiflorum flowers as well as its various fractions have potential therapeutic value in treating diabetes, which may be due to the presence of various antidiabetic metabolites, by enhancing insulin secretion and antioxidant defense. These observations rationalize its use as ethnomedicine and hence can be considered in treating diabetes.


2018 ◽  
Vol 1 (1) ◽  
pp. 11-18
Author(s):  
H. M. Olaitan

Diabetes is a metabolic disease that has caused severe health complications and premature deaths in both developed and developing countries. It is characterized by hyperglycaemia. This study was designed to investigate the hypoglycaemic effect of methanol extract of Aframomum melegueta seed in Alloxan-induced diabetic rats. Adult albino rats of either sex weighing between 90 – 150 g were used. Diabetes was induced by administration of alloxan (100 mg/kg i.p). The rats were seperated into 5 groups of five rats each. Group I served as the negative control and was given normal saline (10 ml/kg p.o). Groups II – IV were given A. melegueta extract at varying doses of 100, 200 and 400 mg/kg p.o respectively. Group V was treated with Glibenclamide at a dose of 2 mg/kg p.o to serve as the positive control. The various treatments were administered for a period of 14 days. The Fasting Blood Glucose (FBG) levels of the rats were determined before and weekly after commencement of treatment with the aid of a glucometer using blood collected from the tail vein. Result revealed that there was a significant (p<0.05) reduction of the Fasting Blood Glucose level after 14 days of treatment in the diabetic groups as compared to the FBG before the treatment. However, there was no significant difference (p>0.05) in the mean Fasting Blood Glucose levels between groups treated with varying doses of A. melegueta seed extract. Also, there was no significant difference (p>0.05) between groups treated with A. melegueta extract and the group treated with Glibenclamide. The investigation showed that A. melegueta seed extract had hypoglycaemic effect in Alloxan – induced diabetic rats which was comparable with that of Glibenclamide, a conventionally used hypoglycaemic drug. However, the hypoglycaemic effect of the extract was not dose dependent. This therefore suggests that Aframomum melegueta seed has a useful potential for the treatment of diabetes mellitus due to its hypoglycaemic effect.


Author(s):  
Sivanageswararao Mekala ◽  
Salum Seif Salum Mchenga ◽  
Saravanan R.

Background: Type 2 diabetes mellitus is the most common type of diabetes. Diabetes mellitus is a leading cause of morbidity and mortality among Indian population and all over the world with more than hundreds of millions of patients worldwide. Pterocarpus marsupium is a medicinal plant used in Ayurvedic system of medicine to control blood sugar and strong antidiabetic. The purpose of this study was to assess the hypoglycemic effect of the ethanolic extract of Pterocarpus marsupium seeds in diabetic rats.Methods: The present work was designed to evaluate the anti-hyperglycaemic activity of Pterocarpus marsupium seed extract (100 mg/kg and 200 mg/kg) on gabapentin induced hyperglycaemia in wistar albino rats. Blood glucose level, serum triglycerides, total cholesterol, HDL cholesterol and LDL cholesterol were evaluated in gabapentin induced diabetic rats. The results of the test drug were compared with the standard drug.Results: Ethanolic seed extract of Pterocarpus marsupium at 100 mg/kg and 200 mg/kg had significantly reduced the blood glucose level compared to disease control rats on day 1, 7, 14 and 21. Pterocarpus marsupium shows significant decrease in triglycerides levels, serum cholesterol levels, LDL levels and increased HDL levels, total protein levels compared to the disease control group.Conclusions: In conclusion, the present study shows that the ethanolic seed extract of Pterocarpus marsupium has potential antidiabetic action in gabapentin induced diabetic rats and the effect was found to be more similar to the standard drug metformin.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Olubanke O. Ogunlana ◽  
Babatunde O. Adetuyi ◽  
Miracle Rotimi ◽  
lohor Esalomi ◽  
Alaba Adeyemi ◽  
...  

Abstract Background Diabetes, a global cause of mortality in developing countries is a chronic disorder affecting the metabolism of macromolecules and has been attributed to the defective production and action of insulin characterized by persistent hyperglycemic properties. This global disorder harms organs of the body such as the liver, kidney and spleen. Medicinal plants such as Hunteria umbellate have been shown to possess hypoglycemic, antioxidative and anti-diabetic properties owing to the high concentration of active phytochemical constituents like flavonoids and alkaloids. The present study seeks to evaluate the hypoglycemic activities of ethanolic seed extract of Hunteria umbellate on streptozotocin-induced diabetes rats. Methods Thirty (30) female experimental rats were randomly divided into five groups with six rats per group and were administered streptozotocin (STZ) and Hunteria umbellate as follows. Group 1 served as control and was given only distilled water, group 2 rats were administered 60 mg/kg STZ; Group 3 was administered 60 mg/kg STZ and 100 mg/kg metformin; group 4 rats were administered 60 mg/kg STZ and 800 mg/kg Hunteria umbellate, group 5 rats 60 mg/kg STZ and 400 mg/kg Hunteria umbellate. The fasting blood glucose level of each rat was measured before sacrifice. Rats were then sacrificed 24 h after the last dose of treatment. Results The results showed that Hunteria umbellate significantly reversed STZ-induced increase in fasting blood glucose and increase in body and organs weight of rats. Hunteria umbellate significantly reversed STZ-induced decrease in antioxidant enzyme in liver, kidney and spleen of rats. Hunteria umbellate significantly reversed STZ-induced increase in oxidative stress markers in liver, kidney and spleen of rats. Conclusion Collectively, our results provide convincing information that inhibition of oxidative stress and regulation of blood glucose level are major mechanisms through which Hunteria umbellate protects against streptozotocin-induced diabketes rats.


2015 ◽  
Vol 93 (4) ◽  
pp. 385-395 ◽  
Author(s):  
Chandrabose Sureka ◽  
Thiyagarajan Ramesh ◽  
Vavamohaideen Hazeena Begum

The aim of the present study was to investigate the protective effects of Sesbania grandiflora flower (SGF) extract on erythrocyte membrane in Streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 190–220 g, were made diabetic by an intraperitonial administration of STZ (45 mg/kg). Normal and diabetic rats were treated with SGF, and diabetic rats were also treated with glibenclamide as drug control, for 45 days. In this study plasma insulin and haemoglobin levels were decreased and blood glucose, glycosylated haemoglobin, protein oxidation, lipid peroxidation markers, and osmotic fragility levels were increased in diabetic rats. Moreover, erythrocytes antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxide, glutathione reductase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase activities and non-enzymatic antioxidants such as vitamin C, vitamin E, reduced glutathione (GSH), and oxidized glutathione (GSSG) levels were altered. Similarly, the activities of total ATPases, Na+/K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase were also decreased in the erythrocytes of diabetic rats. Administration of SGF to STZ-induced diabetic rats reduced blood glucose and glycosylated haemoglobin levels with increased levels of insulin and haemoglobin. Moreover, SGF reversed the protein and lipid peroxidation markers, osmotic fragility, membrane-bound ATPases activities, and antioxidant status in STZ-induced diabetic rats. These results suggest that SGF could provide a protective effect on diabetes by decreasing oxidative stress-associated diabetic complications.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Abdulrahman L. Al-Malki

Postprandial hyperglycemia is a predisposing factor for vascular dysfunction and organ damage.α-glucosidase is a hydrolytic enzyme that increases the glucose absorption rate and subsequently elevates blood glucose levels. Garlic (Allium sativumL.) is a rich source of several phytonutrients, including thiosulfinate (THIO). The aim of this study was to evaluate the ability of THIO, a potent inhibitor of intestinalα-glucosidase, to reduce postprandial blood glucose. Male albino rats were randomly assigned to five different groups (n=10/group). Group 1 served as the control group. Groups 2–5 were injected intraperitoneally with a single dose of streptozotocin (STZ) to induce diabetes. Group 2 comprised untreated diabetic rats. Groups 3 and 4 contained diabetic rats that were given THIO orally (20 mg/kg body weight/day and 40 mg/kg body weight/day, resp.). Group 5 was the positive control having diabetic rats treated orally with acarbose (10 mg/kg body weight/day; positive control). Diabetic rats treated with THIO displayed a significant blood glucose reduction (p<0.001and < 0.01 by analysis of variance, resp.) and a significant elevation in insulin compared with that of untreated rats. THIO is an effective noncompetitive intestinalα-glucosidase inhibitor that promotes hypoglycemic action (p<0.001) in STZ-injected rats. THIO is a promising agent for the management of postprandial hyperglycemia.


Sign in / Sign up

Export Citation Format

Share Document