scholarly journals Comparative Study of Soil Structure Interaction Analysis of Building on Clayey and Sandy Soil

Author(s):  
Payal Jain

Abstract: Present days the analysis of structure with seismic design is more popular. because the first priority of the engineer is effective and durable structure. There are two type of base system first is rigid and second is flexible. In case of flexible base structure, only seismic analysis is not give very effective results. In this condition the SSI effect is more significant and give effective results for flexible base system. The term Soil Structure Interaction (SSI) means interaction between soil to the substructure. This effect give more accurate results after consider in the seismic analysis. If a structure is design according to the seismic analysis with SSI effect than structure could get more durability and safety against earthquake as compare to seismic analysis without SSI effect condition. So the SSI effect can change response of the seismic very significantly. The present study aim is based on seismic analysis of building with Soil Structure Interaction effect on two different soil. A frame rectangular building of G+6 storey has analyzed for flexible base simulating sand and clay soil conditions The software is used SAP2000. Raft foundation has been modeled also. Analysis is made with the response spectrum of IS 1893 2016 code. Seismic response of SSI analysis results are compare in terms of lateral storey displacement, base shear and modal behavior of natural time period on different type of soil ( clay and sand). and conclude that the lateral storey displacement, base shear and natural time period values in SSI analysis with sand soil is maximum as compare to clay soil.

2019 ◽  
Vol 2 (1) ◽  
pp. 153-164
Author(s):  
Umesh Jung Thapa ◽  
Ramesh Karki

In this paper, study of the response (base shear, time period, storey drift, storey displacement) of a structure is done for the tall building including basement with fixed base and with pile foundation considering Soil Structure Interaction (SSI). Finite element based program ETABS2016 v16.1.0 is used for the analysis of the superstructure. Seismic analysis is done to get the dynamic response of superstructure for two types of model,one model is with fixed baseand second is Model with Winkler spring for Chhaya Center, Thamel, a high rise building with 14 story including double basements. Itisobserved with the consideration of Soil Structure Interaction (SSI). The soil is replaced by spring and assigned at joints. El Centro earthquake (1940) is used for time history analysis. The response obtained due to SSI effect is compared with fixed based model. Results of analysis presented include the comparison of natural periods, base shears, displacements and overturning moment. It is observed that the natural periods increase and the base shears decrease as the base become more flexible.


2015 ◽  
Vol 10 (2) ◽  
pp. 113-126
Author(s):  
R N P Singh ◽  
Hemant Kumar Vinayak

Abstract The seismic analysis carried out assuming foundation to be perfectly rigid and bonded to the soil underneath is far from truth and therefore, the soil-structure interaction effect on the dynamic behavior of the bridge pier should be considered. The assessment of soil-structure effect on the design force generated has been estimated using Force based, Capacity Spectrum and Direct Displacement based methods considering fixed and flexible foundations. For this purpose a single cantilever bridge pier of constant diameter with varying heights has been considered for the analysis in different type of soils and earthquake zones. The study has revealed that soil-Structure Interaction index is negative in some cases, especially in soft soil, implying base shear demand being greater than that of fixed base contrary to the traditional views.


2003 ◽  
Vol 19 (3) ◽  
pp. 677-696 ◽  
Author(s):  
Jonathan P. Stewart ◽  
Seunghyun Kim ◽  
Jacobo Bielak ◽  
Ricardo Dobry ◽  
Maurice S. Power

The NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures have contained procedures for soil-structure interaction analysis that were originally developed between 1975 and 1977 by the Applied Technology Council Committee on Soil-Structure Interaction (ATC3 Committee 2C). These procedures affect the analysis of seismic demand in structures by modifying the base shear for a fixed-base structure to that for a flexible-base structure with a longer fundamental mode period and a different (usually larger) system damping ratio. In the 2000 NEHRP Provisions and Commentary, several changes were made to these procedures that affect the analysis of foundation stiffness, and in turn affect the SSI adjustment to base shear. In this paper, SSI analysis procedures in the pre-2000 and 2000 NEHRP Provisions are examined relative to a database of “observed” SSI effects previously evaluated using system identification analyses. Through this calibration exercise and focused numerical analyses, we discuss the motivation and justification for the modifications to the NEHRP SSI analysis procedures.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Liang-Long Song ◽  
Tong Guo ◽  
Xin Shi

In this study, the seismic behavior of low-rise self-centering (SC) prestressed concrete frames considering soil-structure interaction (SSI) is presented. For this purpose, a typical 4-story SC concrete frame, with and without flexible foundations, is analyzed through nonlinear dynamic analysis. Ground motion sets with two hazard levels are selected for analysis. A conventional reinforced concrete (RC) frame is also studied, and the structural demands of the RC and SC frames are compared in terms of peak and residual drifts, base shear, residual settlement, and rotation of foundation. The analysis results show that considering soil-structure interaction generally increases the peak and residual drift demands and reduces the base shear and connection rotation demands when compared to fixed base conditions. For the cases with and without flexible foundations, the SC frame is found to have comparable peak story drifts with the RC frame and have the inherent potential of significantly reducing the residual drifts. The seismic analysis results of the frames with flexible bases show that the RC and SC frames can experience foundation damage due to excessive residual foundation rotations after the maximum considered earthquake (MCE).


1990 ◽  
Vol 6 (4) ◽  
pp. 641-655 ◽  
Author(s):  
Gregory L. Fenves ◽  
Giorgio Serino

An evaluation of the response of a fourteen story reinforced concrete building to the 1 October 1987 Whittier earthquake and 4 October 1987 aftershock shows significant effects of soil-structure interaction. A mathematical model of the building-foundation-soil system provides response quantities not directly available from the records. The model is calibrated using the dynamic properties of the building as determined from the processed strong motion records. Soil-structure interaction reduces the base shear force in the longitudinal direction of the building compared with the typical assumption in which interaction is neglected. The reduction in base shear for this building and earthquake is approximately represented by proposed building code provisions for soil-structure interaction.


Author(s):  
J. Rama Raju Patchamatla ◽  
P. K. Emani

Soil-structure-interaction (SSI) analyses are essential to evaluate the seismic performance of important structures before finalizing their structural design. SSI under seismic condition involves much more complex interaction with soil compared to the dynamic loads having source on the structure. Seismic SSI analysis requires due consideration of site-specific and structure-specific properties to estimate the actual ground motion (scattered motion) experienced at the base of the structure, and subsequently the effects of the scattered motion on the structure. Most challenging aspect of seismic SSI analysis is to implement transmitting boundaries that absorb the artificial reflections of stress waves at the truncated interface of the finite and infinite domains, while allowing the seismic waves to enter the finite domain. In this paper, the time domain implementation of seismic analysis of a soil-structure system is presented using classical discrete models of structure and interactive force boundary conditions for soil. These models represent typical SSI systems- a single Degree of Freedom (DOF) of a spherical cavity with mass attached to its wall, a two DOF system consisting of a mass attached by a nonlinear spring to a semi-infinite rod on elastic foundation, and a three DOF system with additional DOFs for modelling the structural stiffness and damping. The convolution integral representing the force boundary condition on the truncated interface, is evaluated interactively using UAMP user-subroutine in ABAQUS and applied as concentrated forces at the interface (truncated interface) nodes of the bounded domain or generalized-structure domain. The verification problems presented in the paper show the satisfactory performance of the developed MATLAB code and ABAQUS implementation with FORTRAN user-subroutines. The classical phenomena associated with the dynamic soil-structure systems are discussed through the present work.


2012 ◽  
Vol 18 (6) ◽  
pp. 890-898 ◽  
Author(s):  
Sadegh Naserkhaki ◽  
Hassan Pourmohammad

This paper presents a numerical study of soil-structure interaction (SSI) and structure-soil-structure interaction (SSSI) effects on response of twin buildings during earthquake excitations. The buildings are modeled as shear buildings and the soil is simulated by a discrete model representing a visco-elastic half-space subjected to earthquake acceleration. Equation of motion of twin buildings with different conditions, fixed based (FB), SSI and SSSI, are developed via an analytical procedure and solved numerically. Buildings responses are evaluated for aforementioned three conditions considering various soil types and compared together. One must say that soil causes change in distribution of responses throughout the buildings while ignoring soil interaction may lead to detrimental effects on buildings. Anyway, interaction between twin buildings with SSSI condition slightly mitigates soil unfavorable effects compare to one building with SSI condition. In addition, it is found that influence of soil is very significant for soft to stiff soils whereas negligible for hard soils.


Sign in / Sign up

Export Citation Format

Share Document