scholarly journals Pulse sequences for multi-frequency selective NMR excitation in inhomogeneous magnetic fields

2011 ◽  
Author(s):  
Gabriel Seyoum
1991 ◽  
Vol 3 (3) ◽  
pp. 1???11
Author(s):  
Thomas J. Masank ◽  
Jean Tkach ◽  
Mark Glicklich

2011 ◽  
Vol 19 (10) ◽  
pp. 2333-2341
Author(s):  
徐念喜 XU Nian-xi ◽  
高劲松 GAO Jin-song ◽  
梁凤超 LIANG Feng-chao ◽  
赵晶丽 ZHAO Jing-li ◽  
冯晓国 FENG Xiao-guo

2016 ◽  
Vol 34 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Jingwei Sheng ◽  
Yun Liu ◽  
Yuhui Chai ◽  
Weinan Tang ◽  
Bing Wu ◽  
...  

2008 ◽  
Vol 2 (3) ◽  
pp. 222-228 ◽  
Author(s):  
Andrea Lavinio ◽  
Sally Harding ◽  
Floor Van Der Boogaard ◽  
Marek Czosnyka ◽  
Peter Smielewski ◽  
...  

Object Exposing patients with ventricular shunts to magnetic fields and MR imaging procedures poses a significant risk of unintentional changes in shunt settings. Shunt valves can also generate considerable imaging artifacts. The purpose of this study was to determine the magnetic field safety and MR imaging compatibility of 5 adjustable models of hydrocephalus shunts. Methods The Codman Hakim (regular and with SiphonGuard), Miethke ProGAV, Medtronic Strata, Sophysa Sophy and Polaris programmable valves were tested in a low-intensity magnetic field, and then translational attraction (TA), magnetic torque (MT), and volume of artifacts on T1-weighted spin echo (SE) and gradient echo (GE) pulse sequences in a 3-T MR imaging unit were measured. Results The ProGAV and Polaris valves were immune to unintentional reprogramming by magnetic fields up to 3 T. Other valves randomly changed settings, starting from the intensity of field: Sophy valve 24 mT, Strata valve 30 mT, and both Codman Hakim programmable valves from 42 mT. Shunt performances in the 3-T MR imaging unit are reported in the order of compatibility: 1) Codman Hakim regular, TA = 0.005 N, MT = 0.000 Nm, GE = 30 cm3, SE = 2 cm3; 2) Miethke ProGAV, TA = 0.001 N, MT = 1.4 × 10−3 Nm, GE = 231 cm3, SE = 13 cm3; 3) Codman Hakim with SiphonGuard, TA = 0.005 N, MT = 2.3 × 10−3 Nm, GE = 233 cm3, SE = 19 cm3; 4) Medtronic Strata, TA = 0.27 N, MT = 18.0 × 10−3 Nm, GE = 484 cm3, SE = 86 cm3; 5) Sophysa Sophy, TA = 0.82 N, MT = 38.9 × 10−3 Nm, GE = 758 cm3, SE = 72 cm3; and 6) Sophysa Polaris, TA = 0.80 N, MT = 39.6 × 10−3 Nm, GE = 954 cm3, SE = 100 cm3. Conclusions All valves, with the exception of the Polaris and ProGAV models, are prone to unintentional reprogramming when exposed to heterogeneous magnetic fields stronger than 40 mT. All tested valves can be considered safe for 3-T MR imaging. All valves generated a distortion of the MR image, especially the GE sequences.


1994 ◽  
Vol 144 ◽  
pp. 559-564
Author(s):  
P. Ambrož ◽  
J. Sýkora

AbstractWe were successful in observing the solar corona during five solar eclipses (1973-1991). For the eclipse days the coronal magnetic field was calculated by extrapolation from the photosphere. Comparison of the observed and calculated coronal structures is carried out and some peculiarities of this comparison, related to the different phases of the solar cycle, are presented.


1994 ◽  
Vol 144 ◽  
pp. 21-28 ◽  
Author(s):  
G. B. Gelfreikh

AbstractA review of methods of measuring magnetic fields in the solar corona using spectral-polarization observations at microwaves with high spatial resolution is presented. The methods are based on the theory of thermal bremsstrahlung, thermal cyclotron emission, propagation of radio waves in quasi-transverse magnetic field and Faraday rotation of the plane of polarization. The most explicit program of measurements of magnetic fields in the atmosphere of solar active regions has been carried out using radio observations performed on the large reflector radio telescope of the Russian Academy of Sciences — RATAN-600. This proved possible due to good wavelength coverage, multichannel spectrographs observations and high sensitivity to polarization of the instrument. Besides direct measurements of the strength of the magnetic fields in some cases the peculiar parameters of radio sources, such as very steep spectra and high brightness temperatures provide some information on a very complicated local structure of the coronal magnetic field. Of special interest are the results found from combined RATAN-600 and large antennas of aperture synthesis (VLA and WSRT), the latter giving more detailed information on twodimensional structure of radio sources. The bulk of the data obtained allows us to investigate themagnetospheresof the solar active regions as the space in the solar corona where the structures and physical processes are controlled both by the photospheric/underphotospheric currents and surrounding “quiet” corona.


Sign in / Sign up

Export Citation Format

Share Document