scholarly journals Investigation of the stress-deformation state of a bolt-joint assembly of cold-bent thin-walled profiles

Vestnik MGSU ◽  
2019 ◽  
pp. 831-843 ◽  
Author(s):  
Ivan L. Kuznetsov ◽  
Marat A. Salakhutdinov ◽  
Rishat G. Gainetdinov

Introduction: cold-bent profiles with a segment of the concave flat wall are used for manufacturing trusses. In these trusses, the connection between the chords and the webbing is made using gusset plates attached with bolts. Due to the shape of these profiles, the bolts can only be installed in two outer rows. While the profile wall at the place of flat concavity cannot be tightly connected with the gusset plate, so the actual work of such joints is to be studied. The aim of the study is numerical and experimental research of the stress-deformation state of the attachment of a cold-bent thin-walled profile with a segment of the concave flat wall using two rows of bolts. Materials and methods: paired cold-bent profiles with a segment of the concave flat wall connected utilizing bolted gusset plate were used for full-scale tests. Computer simulation and calculation were performed using the SolidWorks software. An examination of the assembly with two rows of bolts was carried out. Results: calculations and full-scale tests of the bolted assembly showed the variation of the forces in the bolts and profiles. It is suggested to eliminate the gap between the walls of cold-bent profiles and gusset plates that allows installing an increased number of bolt rows and reducing stresses in the thin-walled profile of the joint. Conclusions: the results of the study showed that the installation of only two rows of bolts in the joint of thin-walled profiles with a segment of the concave flat wall worsens their stress-deformation state. When filling the concave segment of the wall with sheet steel pieces, it is possible to increase the number of bolt rows and reduce the number of the bolts, increasing the bearing capacity of the cold-bent thin-walled profile and the joint as a whole.

2021 ◽  
Vol 187 ◽  
pp. 106946
Author(s):  
Samira Ebrahimi ◽  
Seyed Rasoul Mirghaderi ◽  
Seyed Mehdi Zahrai

2010 ◽  
Vol 66 (3) ◽  
pp. 470-479 ◽  
Author(s):  
Alireza Bagheri Sabbagh ◽  
Rasoul Mirghaderi ◽  
Mihail Petkovski ◽  
Kypros Pilakoutas

ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 3729-3740 ◽  
Author(s):  
Dirk Jan Peters ◽  
Adam Sadowski ◽  
J. Michael Rotter ◽  
Andreas Taras

Author(s):  
Kazem Sadati ◽  
Hamid Zeraatgar ◽  
Aliasghar Moghaddas

Maneuverability of planing craft is a complicated hydrodynamic subject that needs more studies to comprehend its characteristics. Planing craft drivers follow a common practice for maneuver of the craft that is fundamentally different from ship’s standards. In situ full-scale tests are normally necessary to understand the maneuverability characteristics of planing craft. In this paper, a study has been conducted to illustrate maneuverability characteristics of planing craft by full-scale tests. Accelerating and turning maneuver tests are conducted on two cases at different forward speeds and rudder angles. In each test, dynamic trim, trajectory, speed, roll of the craft are recorded. The tests are performed in planing mode, semi-planing mode, and transition between planing mode to semi-planing mode to study the effects of the craft forward speed and consequently running attitude on the maneuverability. Analysis of the data reveals that the Steady Turning Diameter (STD) of the planing craft may be as large as 40 L, while it rarely goes beyond 5 L for ships. Results also show that a turning maneuver starting at planing mode might end in semi-planing mode. This transition can remarkably improve the performance characteristics of the planing craft’s maneuverability. Therefore, an alternative practice is proposed instead of the classic turning maneuver. In this practice, the craft traveling in the planing mode is transitioned to the semi-planing mode by forward speed reduction first, and then the turning maneuver is executed.


1984 ◽  
Vol 18 (4) ◽  
pp. 166-170
Author(s):  
A. L. Rakhmanova ◽  
I. O. Rybak

Sign in / Sign up

Export Citation Format

Share Document