scholarly journals Soil organic carbon status under different land use systems and soil fertility status of Rachanahalli sub watershed, Yadgir district in Karnataka, India

2020 ◽  
Vol 8 (1) ◽  
pp. 680-686
Author(s):  
Rajendra Hegde ◽  
TN Somashekar ◽  
SP Chaitra ◽  
GM Arpitha ◽  
G Bardhan ◽  
...  
2020 ◽  
Vol 29 (6) ◽  
pp. 3975-3982
Author(s):  
Didar Ahmad ◽  
Farhan Hafeez ◽  
Hesham Alharby ◽  
Atif Bamagoos ◽  
Khalid Hakeem ◽  
...  

2019 ◽  
Vol 35 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Stoécio Malta Ferreira Maia ◽  
Giordano Bruno Medeiros Gonzaga ◽  
Leilane Kristine dos Santos Silva ◽  
Guilherme Bastos Lyra ◽  
Tâmara Cláudia de Araújo Gomes

2020 ◽  
Vol 300 ◽  
pp. 106997
Author(s):  
Assefa Abegaz ◽  
Lulseged Tamene ◽  
Wuletawu Abera ◽  
Tesfaye Yaekob ◽  
Habtamu Hailu ◽  
...  

2018 ◽  
Vol 10 (1) ◽  
pp. 185-189
Author(s):  
Ashwini Ambadi ◽  
D. Krishnamurty ◽  
Sathyanaran Rao ◽  
B. K. Desai ◽  
M.V. Ravi ◽  
...  

A field experiment was conducted on vertisols (pH of 7.56 with organic carbon content of 0.55%) at Re- search Institute on Organic Farming, University of Agricultural Sciences, Raichur coming under northern Karnataka during rabi season of 2015-16 to study the Influence of varied crop residues and green biomass composts to rabi sorghum growing soils on uptake of major nutrients, organic carbon and soil fertility status. In general application of Cotton stalks, Redgram stalks, Glyricidia, combination of cotton and redgram stalks composts, FYM and combina- tion of organic and inorganic fertilizers helped to buildup soil nutrients with respect to organic carbon, available nitro- gen and phosphorus. Significantly higher nitrogen (227.3 kg ha-1), phosphorous (75.7 kg ha-1) and potassium (141.7 kg ha-1) uptake by rabi sorghum was recorded with combined application of recommended FYM (3 t ha-1) and NP fertilizers (50:25 kg N, P2O5 ha-1) (T14) followed by Cotton stalks +Redgram stalks + Glyricidia sp. with C:N ratio of 30:1 compost @ 50 kg N equivalent (T12: 222.0, 74.0 and 132.3 kg ha-1). The least uptake was recorded with abso- lute control (T15: 127.0, 42.0 and 71.7 kg ha-1). Similar trend was observed with organic carbon, available nitrogen and phosphorus. Combined application of recommended FYM (3 t ha-1) and NP fertilizers (50:25 kg N, P2O5 ha-1) followed by Cotton stalks +Redgram stalks + Glyricidia sp. with C:N ratio of 30:1 compost @ 50 kg N equivalent at the time of sowing recorded higher major nutrients uptake, microbial biomass and soil fertility status.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 435
Author(s):  
Prakash Rai ◽  
Vineeta ◽  
Gopal Shukla ◽  
Abha Manohar K ◽  
Jahangeer A Bhat ◽  
...  

In recent decades, carbon (C) management is an important point on the agenda to identify the best viable mitigation strategies for its reduction. The study was conducted at Jaldapara National Park located in the Eastern Himalayan region of India. The study quantified litter production, decomposition, periodic nutrient release, soil fertility status, and soil organic carbon (SOC) of five major forest stands i.e., Tectona grandis (TGDS), Shorea robusta (SRDS), Michelia champaca (MCDS), Lagerstroemia parviflora (LPDS) and miscellaneous stand (MS). A stratified random nested quadrate method was adopted for sample collection. Results reveal that the greatest amount of litter production and decomposition was under MCDS followed by MS, LPDS, SRDS, and the smallest under TGDS. The material annual turnover through litter decomposition in all the stands varies between 96.46% and 99.34%. The content and amount of the available nutrients in litter varied significantly among the stands. Moreover, release of these nutrients was nearly equal to the amount available in the initial litter mass. In general, the magnitude of the total nutrient return was in the same order as the total litter fall and the nutrient availability was more closely related to litter nutrient content and soil organic carbon. The range of pH (4.86–5.16), EC (0.34–0.50), soil moisture (27.01–31.03) and available primary nutrients (N: (0.21–0.26 Mg/ha), P: (0.09–0.12 Mg/ha), K: (0.13–0.14 Mg/ha)) also varied significantly among the stands. Significant positive correlations were observed between SOC, N and K. Both the fertility indices exhibited no definite pattern in the stands but a significant correlation between the two indicates the healthy soil fertility status of the stands. SOC varies significantly under different forest stands, but the greatest content was found under MS. The estimated SOC ranges between 75.9 and 107.7 Mg ha−1 up to 60 cm and is reported to be below the Indian average of 182.94 Mg ha−1. The present study strongly recommends that Tectona grandis, Shorea robusta, Michelia champaca, and Lagerstroemia parviflora should be the important commercial timbers of the Eastern Himalayan region because they may help further to increase the C sink in agricultural and degraded landscapes.


2018 ◽  
Vol 22 (03) ◽  
pp. 103-108
Author(s):  
Enkhtuya D ◽  
Tuul D ◽  
Munkhtsetseg T

Soil organic matter can be analyzed on the basis of the different fractions. Changes in the levels of organic matter, caused by land use, can be better understood by alterations in the different fractions. Therefore in order to discover tendency of soil fertility sustainability it is significant to research on stable and labile form fractions of soil organic carbon by advanced methodology and modern technique. Our research work aimedto evaluate the effect of mineral and organic fertilizers on the labile and stable organic carbon of the chestnut soil in Mongolia. The soils samples used in this study we collected from variants of mineral (N60P40K40), organic (biohumus 1t / hec.) Fertilizer and their combination of the Long-term fertilizers experiments of Plant and Agriculture Institute Changes in soil organic C by land use for agricultural purposes occurred mainly in the fraction of particulate organic matter (> 20 μm). The clay and silt fractions were quatified with a Mastersizer S after distruction organic substances and carbonates using H2O2 and HCI and the sand fraction was determined by wet sieving. According to our research, the stable form of organic carbon in chestnut soil is 39, 0-40,1% of the total fine particle size and 59, 9-61,0% of the active form fraction. On the other hand, variants with fertilizer tend to have increased stabile composition of soil organic carbon. It indicates that soil fertility protection and increased stability are possible in the country’s agricultural technology if use mineral and organic fertilizers.


Sign in / Sign up

Export Citation Format

Share Document