scholarly journals Evaluation and prediction of overall heat transfer coefficient of Scraped surface heat exchanger during kheer making

2021 ◽  
Vol 9 (1) ◽  
pp. 720-726
Author(s):  
Sapna Jain ◽  
S Kartikeyan ◽  
Pankaj Purohit ◽  
AK Agrawal ◽  
AG Bhadania ◽  
...  
Author(s):  
Sirine Ali ◽  
Mounir Baccar

Abstract This work aims to characterize the hydrodynamic and thermal behaviors in an innovative scraped surface heat exchanger (SSHE) equipped with helical ribbon by means of the numerical simulation approach. In this study, the conservation equations of continuity, momentum, and energy in the laminar, steady-state and isothermal conditions are resolved using a specific computational fluid dynamics (CFD) code based on the 3D finite volume method. The effects of the gap between the exchanger wall and the tip of the ribbon, the ribbon width, and the number of turns in the ribbon on the hydrodynamic and thermal behaviors are studied. Varying the gap values leads to reveal an optimum value giving the highest heat transfer coefficient. Moreover, numerical results have shown that increasing the ribbon width improves the heat transfer. Furthermore, the influence of the number of turns is carried out for Reynolds number ratios (Rer/Rea) inferior and superior to 1. Results revealed that increasing the number of turns avoids the back-mixing phenomenon and thus improves the heat transfer. In this study, the establishment of correlation is determined with the introduction of dimensionless and geometrical groups to predict the heat transfer coefficient in SSHE.


2018 ◽  
Vol 225 ◽  
pp. 05006 ◽  
Author(s):  
Shaymaa H. Abdulmalek ◽  
Hussain H. Al-Kayiem ◽  
Aklilu T. Baheta ◽  
Ali A. Gitan

Heat recovering from biogas waste energy requires robust heat exchanger design. This paper presents the design of fuel gas-air heat exchanger (FGAHE) for recovering waste heat from biogas burning to regenerate desiccant material. Mathematical model was built to design the FGAHE based on logarithmic mean temperature difference (LMTD) and staggered tube bank heat transfer correlations. MATLAB code was developed to solve the algorithm based on overall heat transfer coefficient iteration technique. The effect on tube diameter on design and thermal characteristics of FGAHE is investigated. The results revealed that the smaller tube diameter leads to smaller heat transfer area and tube. On the other hand, the overall heat transfer coefficient and Nusselt numbers have larger rates at smaller tube diameter. In conclusion, the nominated tube diameter for FGAHE is the smaller diameter of 0.0127 m due to the high thermal performance.


2018 ◽  
Vol 221 ◽  
pp. 54-69 ◽  
Author(s):  
Oscar Darío Hernández-Parra ◽  
Artemio Plana-Fattori ◽  
Graciela Alvarez ◽  
Fatou-Toutie Ndoye ◽  
Hayat Benkhelifa ◽  
...  

2015 ◽  
Vol 62 (4) ◽  
pp. 509-522 ◽  
Author(s):  
R. Dharmalingam ◽  
K.K. Sivagnanaprabhu ◽  
J. Yogaraja ◽  
S. Gunasekaran ◽  
R. Mohan

Abstract Cooling is indispensable for maintaining the desired performance and reliability over a very huge variety of products like electronic devices, computer, automobiles, high power laser system etc. Apart from the heat load amplification and heat fluxes caused by many industrial products, cooling is one of the major technical challenges encountered by the industries like manufacturing sectors, transportation, microelectronics, etc. Normally water, ethylene glycol and oil are being used as the fluid to carry away the heat in these devices. The development of nanofluid generally shows a better heat transfer characteristics than the water. This research work summarizes the experimental study of the forced convective heat transfer and flow characteristics of a nanofluid consisting of water and 1% Al2O3 (volume concentration) nanoparticle flowing in a parallel flow, counter flow and shell and tube heat exchanger under laminar flow conditions. The Al2O3 nanoparticles of about 50 nm diameter are used in this work. Three different mass flow rates have been selected and the experiments have been conducted and their results are reported. This result portrays that the overall heat transfer coefficient and dimensionless Nusselt number of nanofluid is slightly higher than that of the base liquid at same mass flow rate at same inlet temperature. From the experimental result it is clear that the overall heat transfer coefficient of the nanofluid increases with an increase in the mass flow rate. It shows that whenever mass flow rate increases, the overall heat transfer coefficient along with Nusselt number eventually increases irrespective of flow direction. It was also found that during the increase in mass flow rate LMTD value ultimately decreases irrespective of flow direction. However, shell and tube heat exchanger provides better heat transfer characteristics than parallel and counter flow heat exchanger due to multi pass flow of nanofluid. The overall heat transfer coefficient, Nusselt number and logarithmic mean temperature difference of the water and Al2O3 /water nanofluid are also studied and the results are plotted graphically.


Author(s):  
Rajinder Singh ◽  
Surendra Singh Kachhwaha

The present study reports the experimental validation of thermohydraulic modeling for prediction of pressure drop and heat transfer coefficient. Experiments were performed on plate heat exchanger using chilled water and ice slurry as secondary fluids. Propylene glycol (PG) and mono-ethylene glycol (MEG) are used as depressants (10%, 20%, 30%, and 40% concentration) in ice slurry formation. The results show that thermohydraulic modeling predicts the pressure drop and overall heat transfer coefficient for water to water and water to ice slurry within the discrepancy limit of ±15%.


1987 ◽  
Vol 34 (9) ◽  
pp. 559-566 ◽  
Author(s):  
Haruyoshi YAMAMOTO ◽  
Kensuke ITOH ◽  
Shin'ichi TANEYA ◽  
Yukio SOGO

Sign in / Sign up

Export Citation Format

Share Document