scholarly journals Long-term variation of galactic cosmic ray intensity observed with the Nagoya multidirectional muon detector

2019 ◽  
Author(s):  
K. Munakata ◽  
C. Kato ◽  
R. R S Mendonça ◽  
M. Tokumaru
1968 ◽  
Vol 46 (10) ◽  
pp. S903-S906 ◽  
Author(s):  
J. A. Lockwood ◽  
W. R. Webber

The variation in the cosmic-ray intensity recorded by neutron monitors from 1958 to 1965 has been investigated to deduce the form of the solar modulation of the cosmic radiation. The observed changes in the intensity at the neutron monitor stations, averaged over quarter-year periods, were compared with changes calculated using modulation functions depending upon energy, rigidity, and velocity × rigidity. These calculations were based upon the revised differential response functions deduced by Lockwood and Webber (1967). The variance between the observed and calculated changes in the neutron monitor intensities at different stations was minimized to determine the best form of the solar modulation function. We find that the change of the primary cosmic radiation, deduced from the change in the neutron monitor intensity as well as from direct measurements of the primary flux, can be described by a modulation of the form exp(–K/P) in the rigidity range 0.5 < P < 50 GV. The change between 1959 and 1965 can be fitted with K = 1.94 ± 0.09 and between 1963 and 1965 with K = 0.36 ± 0.05.


2008 ◽  
Vol 41 (2) ◽  
pp. 267-274 ◽  
Author(s):  
M.V. Alania ◽  
K. Iskra ◽  
M. Siluszyk

2005 ◽  
Vol 23 (9) ◽  
pp. 3003-3007 ◽  
Author(s):  
L. I. Dorman

Abstract. We determine the dimension of the Heliosphere (modulation region), radial diffusion coefficient and other parameters of convection-diffusion and drift mechanisms of cosmic ray (CR) long-term variation, depending on particle energy, the level of solar activity (SA) and general solar magnetic field. This important information we obtain on the basis of CR and SA data in the past, taking into account the theory of convection-diffusion and drift global modulation of galactic CR in the Heliosphere. By using these results and the predictions which are regularly published elsewhere of expected SA variation in the near future and prediction of next future SA cycle, we may make a prediction of the expected in the near future long-term cosmic ray intensity variation. We show that by this method we may make a prediction of the expected in the near future (up to 10-12 years, and may be more, in dependence for what period can be made definite prediction of SA) galactic cosmic ray intensity variation in the interplanetary space on different distances from the Sun, in the Earth's magnetosphere, and in the atmosphere at different altitudes and latitudes.


2017 ◽  
Author(s):  
Riccardo Munini ◽  
Alessandro Bruno ◽  
Christian Eric ◽  
Georgia A. De Nolfo ◽  
Martucci Matteo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document