Investigation of nickel coatings obtained by laser processing on the surface of bronze

Author(s):  
E. Yu. Gerashchenkova ◽  
D. A. Gerashchenkov ◽  
A. N. Belyakov

The article presents the results of a comprehensive study of the modes of laser processing during the formation of a coating on nickel-aluminum bronze using nickel powders. The coating was obtained in two stages. At the first stage, a precursor coating of the powder material was applied by cold spraying, at the second stage, its surface treatment with a laser was performed. The change in the composition and properties of the coating is shown depending on the processing modes and the thickness of the precursor coating, as well as the modes of laser processing.

Author(s):  
Michél Hauer ◽  
Frank Gärtner ◽  
Sebastian Krebs ◽  
Thomas Klassen ◽  
Makoto Watanabe ◽  
...  

AbstractThe present study compares prerequisites for cavitation-resistant bronzes production by different coating techniques, namely cold spraying, HVOF spraying, warm spraying and arc spraying. If optimized to maximum cavitation resistance, the deposited coatings can increase the service life of ship rudders significantly. Furthermore, these methods could enable repair processes for ship propellers. This study is meant to help selecting the right coating technology to achieve best cavitation protection for a given set of requirements. Using high-pressure warm spraying and cold spraying, properties similar to those of cast nickel aluminum bronze are achieved. Also, coatings produced by using HVOF and arc spraying have erosion rates that are only about four, respectively, three times higher as compared to cast nickel aluminum bronze, while by far outperforming bulk shipbuilding steel. Their properties should be sufficient for longer service life, i.e., less docking events for ship rudder repair. Hence, with respect to costs, HVOF and arc spraying could represent a good compromise to reach the specified coating properties needed in application, potentially even for propeller repair.


2013 ◽  
Vol 25 (3) ◽  
pp. 032009 ◽  
Author(s):  
R. Cottam ◽  
T. Barry ◽  
D. McDonald ◽  
H. Li ◽  
D. Edwards ◽  
...  

2021 ◽  
Author(s):  
M. Hauer ◽  
F. Gärtner ◽  
S. Krebs ◽  
T. Klassen ◽  
M. Watanabe ◽  
...  

Abstract The present study compares needed prerequisites for the application of cavitation resistant bronzes by applying different coating techniques, such as cold spraying, HVOF spraying, warm spraying and arc spraying. By optimization to optimum cavitation resistance, the deposited coatings can increase the service life of ship rudders significantly and even serve as repair processes for ship propellers. The given overview aims to support the selection of processes when specifying the target properties to be set with regard to cavitation protection. By using high-pressure warm spraying and cold spraying, properties similar to those of cast nickel aluminum bronze were achieved, however at relatively high costs. In contrast, coatings produced by using HVOF and arc spraying have erosion rates that are only about four respectively three times higher as compared to cast nickel aluminum bronze, while far outperforming bulk shipbuilding steel. Hence, their properties should be sufficient for acceptable service life or docking intervals for ship rudder applications. Propeller repair might demand for better coating properties as obtained by cold spraying. With respect to costs, HVOF and arc spraying in summary might represent a good compromise to reach coating properties needed in application.


1999 ◽  
Author(s):  
Kenneth C. Meinert ◽  
Eric J. Whitney

Alloy Digest ◽  
2019 ◽  
Vol 68 (9) ◽  

Abstract AMS 4880-C95510 is a nickel-aluminum bronze casting useful for bushings and bearings. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on machining. Filing Code: Cu-895. Producer or source: Concast Metal Products Company.


Alloy Digest ◽  
1956 ◽  
Vol 5 (9) ◽  

Abstract AUR-O-MET 57 is a high nickel-aluminum bronze that was developed primarily for its abrasion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on heat treating, machining, and joining. Filing Code: Cu-42. Producer or source: Aurora Metal Company.


Alloy Digest ◽  
1967 ◽  
Vol 16 (4) ◽  

Abstract PROMET-115N is a heat treatable nickel-aluminum bronze recommended for corrosion resistant, high strength bearings, gears and castings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-175. Producer or source: American Crucible Products Company.


2021 ◽  
Vol 2 (1) ◽  
pp. 61-77
Author(s):  
Hamid Reza Jafari ◽  
Ali Davoodi ◽  
Saman Hosseinpour

In this work, the corrosion behavior and surface reactivity of as-cast and heat-treated nickel aluminum bronze casting alloy (UNS C95800) in 3.5 wt% NaCl solution is investigated under stagnant and flow conditions. Increasing flow rate conditions are simulated using a rotating disk electrode from 0 to 9000 revolutions per minute (rpm). Optical micrographs confirm the decrease in the phase fraction of corrosion-sensitive β phase in the microstructure of C95800 after annealing, which, in turn, enhances the corrosion resistance of the alloy. Electrochemical studies including open circuit potentiometry, potentiodynamic polarization, and electrochemical impedance spectroscopy are performed to assess the effect of flow rate and heat treatment on the corrosion of samples at 25 and 40 °C in 3.5 wt% NaCl solution. For both as-cast and heat-treated samples, increasing the flow rate (i.e., electrode rotating rate) linearly reduces the corrosion resistance, indicating that the metal dissolution rate is significantly affected by hydrodynamic flow. Increasing the solution temperature negatively impacts the corrosion behavior of the as-cast and heat-treated samples at all flow conditions.


Sign in / Sign up

Export Citation Format

Share Document