The Earth’s surface remote sensing methods used to explore heat islands in the city of Tyumen

2021 ◽  
Vol 977 (11) ◽  
pp. 40-50
Author(s):  
I.D. Akhmedova ◽  
L.D. Sulkarnaeva ◽  
N.V. Zherebyatieva ◽  
A.V. Petukhova

The authors present the results of mapping the “heat island” surface in the city of Tyumen and determining its spatial and seasonal manifestations using the Landsat-8 satellite data. Geothermic scenes of four seasons were obtained and analyzed

Author(s):  
A. H. Ngandam Mfondoum ◽  
P. G. Gbetkom ◽  
R. Cooper ◽  
S. Hakdaoui ◽  
M. B. Mansour Badamassi

Abstract. This paper addresses the remote sensing challenging field of urban mixed pixels on a medium spatial resolution satellite data. The tentatively named Normalized Difference Built-up and Surroundings Unmixing Index (NDBSUI) is proposed by using Landsat-8 Operational Land Imager (OLI) bands. It uses the Shortwave Infrared 2 (SWIR2) as the main wavelength, the SWIR1 with the red wavelengths, for the built-up extraction. A ratio is computed based on the normalization process and the application is made on six cities with different urban and environmental characteristics. The built-up of the experimental site of Yaoundé is extracted with an overall accuracy of 95.51% and a kappa coefficient of 0.90. The NDBSUI is validated over five other sites, chosen according to Cameroon’s bioclimatic zoning. The results are satisfactory for the cities of Yokadouma and Kumba in the bimodal and monomodal rainfall zones, where overall accuracies are up to 98.9% and 97.5%, with kappa coefficients of 0.88 and 0.94 respectively, although these values are close to those of three other indices. However, in the cities of Foumban, Ngaoundéré and Garoua, representing the western highlands, the high Guinea savannah and the Sudano-sahelian zones where built-up is more confused with soil features, overall accuracies of 97.06%, 95.29% and 74.86%, corresponding to 0.918, 0.89 and 0.42 kappa coefficients were recorded. Difference of accuracy with EBBI, NDBI and UI are up to 31.66%, confirming the NDBSUI efficiency to automate built-up extraction and unmixing from surrounding noises with less biases.


2016 ◽  
Vol 9 (2) ◽  
pp. 614 ◽  
Author(s):  
Elânia Daniele Silva Araújo

A intensa urbanização causa diversos problemas de natureza ambiental, climática e social. O crescimento não planejado da população urbana e a remoção da vegetação são fatores que intensificam estes problemas. As temperaturas na cidade são significativamente mais quentes do que as suas zonas rurais circundantes devido às atividades humanas. As intensas mudanças espaciais em áreas urbanas, promovem significativo aumento na temperatura, causando o chamado efeito de Ilha de Calor Urbano (ICU). Campina Grande é uma cidade de tamanho médio que experimentou um crescimento desordenado, desde o tempo do comércio de algodão e, como qualquer cidade de grande ou médio porte, sofre alterações em seu espaço. Dessa forma, este estudo teve por objetivo analisar a variabilidade espaço-temporal da temperatura da superfície (Ts) e detectar ICU, através de técnicas de sensoriamento remoto. Para o efeito, foram utilizadas imagens dos satélites Landsat 5 e 8, dos anos de 1995, 2007 e 2014. Aumentos da Ts foram bem evidentes e foram detectadas duas ICU. Campina Grande mostra um padrão de tendência: o crescimento urbano não planejado é responsável por mudanças no ambiente físico e na forma e estrutura espacial da cidade, o que se reflete sobre o microclima e, em última análise, na qualidade de vida das pessoas.   ABSTRACT The intense urbanization causes several problems of environmental, climate and social nature. The unplanned growth of urban population and the vegetation removal are factors that deepen these problems. Temperatures in the city are significantly warmer than its surrounding rural areas due to human activities. Large spatial changes in urban areas promote significant increase in temperature, causing the so-called Urban Heat Island effect (UHI). Campina Grande is a medium-sized town that experienced an uncontrolled growth since the time of the cotton trade and like any large or medium-sized city, undergoes changes in its space. Therefore, this study aimed to analyze surface temperature spatial and temporal variability and to detect potential UHI, through remote sensing techniques. Spectral images from Landsat 5 and 8 satellites were used. Using images from years 1995, 2007 and 2014, considerable increases in temperature were identified and two UHI were recognize. Campina Grande shows a trend pattern: the urban unplanned growth is responsible for changes in the physical environment and in the form and spatial structure of the city, reflecting on people quality of life. Keywords: change detection, surface temperature, heat islands, urbanization.   


Author(s):  
Pieter Snyman ◽  
A. Stephen Steyn

Urban heat islands (UHIs) are characterised by warmer urban air temperatures compared to rural air temperatures, and the intensity is equal to the difference between the two. Air temperatures are measured at various sites across the city of Bloemfontein and then analysed to determine the UHI characteristics. The UHI is found to have a horseshoe shape and reaches a maximum intensity of 8.2 °C at 22:00. The UHI is largely affected by the local topography.


Author(s):  
Дмитрий Владимирович Сарычев ◽  
Ирина Владимировна Попова ◽  
Семен Александрович Куролап

Рассмотрены вопросы мониторинга теплового загрязнения окружающей среды в городах. Представлена методика отбора спектрозональных спутниковых снимков, их обработки и интерпретации полученных результатов. Для оценки городского острова тепла были использованы снимки с космического аппарата Landsat 8 TIRS. На их основе построены карты пространственной структуры острова тепла города Воронежа за летний и зимний периоды. Определены тепловые аномалии и выявлено 11 основных техногенных источников теплового загрязнения в г. Воронеже, установлена их принадлежность к промышленным зонам предприятий, а также к очистным гидротехническим сооружениям. Поверхностные температуры данных источников в среднем были выше фоновых температур приблизительно на 6° зимой и на 15,5° С летом. Синхронно со спутниковой съемкой были проведены наземные контрольные тепловизионные измерения температур основных подстилающих поверхностей в г. Воронеже. Полученные данные показали высокую сходимость космических и наземных измерений, на основании чего сделан вывод о надежности используемых данных дистанционного зондирования Земли в мониторинговых наблюдениях теплового загрязнения городской среды. Результаты работ могут найти применение в городском планировании и медицинской экологии. The study deals with the remote sensing and monitoring of urban heat islands. We present a methodology of multispectral satellite imagery selection and processing. The study bases on the freely available Landsat 8 TIRS data. We used multitemporal thermal band combinations to make maps of the urban heat island of Voronezh (Russia) during summer and winter periods. That let us identify 11 artificial sources of heat in Voronezh. All of them turned out to be allocated within industrial zones of plants and water treatment facilities. Land surface temperatures (LST) of these sources were approximately 6° and 15.5° C above the background temperatures in winter and summer, respectively. To prove the remotely sensed temperatures we conducted ground control measurements of LST of different surface types at the satellite revisit moments. Our results showed a significant correlation between the satellite and ground-based measurements, so the maps we produced in this study should be robust. They are of use in urban planning and medical ecology studies.


2012 ◽  
Vol 34 (9-10) ◽  
pp. 3177-3192 ◽  
Author(s):  
José A. Sobrino ◽  
Rosa Oltra-Carrió ◽  
Guillem Sòria ◽  
Juan Carlos Jiménez-Muñoz ◽  
Belén Franch ◽  
...  

Proceedings ◽  
2018 ◽  
Vol 2 (7) ◽  
pp. 358 ◽  
Author(s):  
Gordana Kaplan ◽  
Ugur Avdan ◽  
Zehra Yigit Avdan

2020 ◽  
Author(s):  
Mikias Biazen Molla

Abstract This investigation was conducted for the estimation of the temporal land surface temperature value using thermal remote sensing of Landsat-8 (OLI) Data in Hawassa City Administration, Ethiopia. Satellite datasets of Landsat-7 (ETM+) for 22nd March 2002 and Landsat-8 (OLI) of 22nd March 2019 were taken for this study. Different algorisms were used to estimate the Normalized Difference Vegetation Index threshold from the Red and Near-Infrared band and the ground earth's surface emissivity esteem is legitimately recovered from the thermal infrared by coordinating with the outcome got from MODIS information. The land use land cover map of the city was prepared with better accuracy using the on-screen classification technique. The spatial distribution of surface temperature of the city range from 6.62°C to 22.54°C with a mean of 14.58°C and a standard deviation of 11.25 in the year of march 22nd 2002. The LST result derived from Landsat 8 for March 22nd, 2019, ranges from 11.97°C to 35.5°C with a mean of 23.735 °C and a standard deviation of 16.64. In both years the higher LST values correspond to built-up/settlement and bare/open lands of the city; whereas, lower LST values were observed in vegetation (trees/woodlot, shrubs, and grass forested) area. Urban expansion (built-up area roads, and another impervious surface), decline in vegetation levels due to deforestation and increasing population density. Increasing an evergreen tree and green space coverage, design and develop city parks and rehabilitate the existing degraded natural environments are among the recommended strategy to reduce the rate of LST.


Author(s):  
A. Krtalić ◽  
A. Kuveždić Divjak ◽  
K. Čmrlec

Abstract. This study aims to assess surface urban heat islands (SUHIs) pattern over the city of Zagreb, Croatia, based on satellite (optical and thermal) remote sensing data. The spatio-temporal identification of SUHIs is analysed using the 12 sets of Landsat 8 imagery acquired during 2017 (in each month of the year). Vegetation cover within the city boundaries is extracted by using Principal Component Analysis (PCA) data fusion method on calculated three vegetation indices (VI): Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Ratio Vegetation Index (RVI) for each set of bands. The first principal component was used to compute the land surface temperature (LST) and deductive Environmental Criticality Index (ECI). As expected, the relationship between LST and all VI scores shows a negative correlation and is most negative with RVI. The environmentally critical areas and the patterns of seasonal variations of the SUHIs in the city of Zagreb were identified based on the LST, ECI and vegetation cover. The city centre, an industrial area in the eastern part and an area with shopping centers and commercial buildings in the western part of the city were identified as the most critical areas.


2019 ◽  
Author(s):  
Jeffrey Chambers ◽  
Caralyn Gorman ◽  
Yanlei Feng ◽  
Margaret Torn ◽  
Jared Stapp

The Camp Fire rapidly spread across a landscape in Butte County, California, toward the city of Paradise in the early morning hours of 8 November 2018. Here we provide a set of initial tools and analyses that are useful to a variety of stakeholders, including: (1) a visualization app for GOES 16 data and the surrounding landscape showing the rapid spread of the fire from 6:37-10:47 a.m. local time; (2) processed Landsat 8 images for before, during, and after the fire, along with a tool for visualizing regional impacts; (3) a timeline of fire spread from ignition over the first four hours; and (4) a description of a potential early warning app that could make use of existing data, visualization, and analysis tools, to provide additional information for effective evacuation of communities threatened by rapidly moving wildfires. Using these tools we estimate that, over the first hour, the Camp Fire was consuming ~200 ha/minute of vegetation with a linear spread rate of 14 km over the fire’s first 25 minutes, or ~33km/hr. We briefly discuss broader use of remote sensing and geospatial analysis for fire research and risk management.


MAUSAM ◽  
2022 ◽  
Vol 52 (4) ◽  
pp. 703-708
Author(s):  
SHRAVAN KUMAR ◽  
THAKUR PRASAD ◽  
N. V. SASHIDHARAN ◽  
SUSHMA K. NAIR

A mobile temperature survey of Brihan Mumbai (Greater Bombay) was undertaken on 16 January 1997 which incidentally turned out to be the coldest winter night. Heat islands were found well inside the city, away from the coastal boundary, within a distinct tongue of warm air splitting in three branches roughly along the three sub- urban railway tracks. The finding of the study were in sharp contrast with similar studies conducted during the early seventies by Daniel and Krishnamurthy (1973) and later by Mukherjee and Daniel (1976). They found a remarkable influence of sea on the horizontal temperature distribution in comparison to other factors of urbanisation and noticed the heat island over Malabar Hill, Girgaurn and Cuffe Parade area. The survey conducted after a span of twenty-two years, showed that the temperature distribution in the city and suburbs has been modified significantly and that the effect of urbanisation has overtaken the effect of maritime influence in the formation and maintenance of heat islands. Another mobile temperature survey was conducted during the early hours of 11 May 1997 on the same lines as survey conducted on 16 January 1997, to confirm the findings of earlier survey and to assess seasonal changes in the intensities of heat island. This later survey showed similar pattern of horizontal temperature distribution, though the intensity of heat island observed was only 5.5° C as compared to 11.8° C observed during winter.


Sign in / Sign up

Export Citation Format

Share Document