scholarly journals Should dispersers be fast learners? Modelling the role of cognition in dispersal syndromes

Author(s):  
Jannis Liedtke ◽  
Lutz Fromhage

Both cognitive abilities and dispersal tendencies can vary strongly between individuals. Since cognitive abilities may help dealing with unknown circumstances it is conceivable that dispersers may rely more heavily on learning abilities than residents. However, cognitive abilities are costly and leaving a familiar place might result in losing the advantage of having learned to deal with local conditions. Thus, individuals which invested in learning to cope with local conditions may be more reluctant to leave their natal place. In order to disentangle the complex relationship between dispersal and learning abilities we implemented individual-based simulations. By allowing for developmental plasticity, individuals could either develop a ‘resident´ or ‘dispersal´ cognitive phenotype. In line with our expectations, the correlation between learning abilities and dispersal could take any direction, depending how much time individuals had to recoup their investment in cognition. Both, longevity and the timing of dispersal within lifecycles determine the time individuals have to recoup that investment and thus crucially influence this correlation. We therefore suggest that species´ life-history will strongly impact the expected cognitive abilities of dispersers, relative to their resident conspecifics, and that cognitive abilities might be an integral part of dispersal syndromes.

Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


2020 ◽  
Vol 375 (1803) ◽  
pp. 20190495 ◽  
Author(s):  
Natalie Uomini ◽  
Joanna Fairlie ◽  
Russell D. Gray ◽  
Michael Griesser

Traditional attempts to understand the evolution of human cognition compare humans with other primates. This research showed that relative brain size covaries with cognitive skills, while adaptations that buffer the developmental and energetic costs of large brains (e.g. allomaternal care), and ecological or social benefits of cognitive abilities, are critical for their evolution. To understand the drivers of cognitive adaptations, it is profitable to consider distant lineages with convergently evolved cognitions. Here, we examine the facilitators of cognitive evolution in corvid birds, where some species display cultural learning, with an emphasis on family life. We propose that extended parenting (protracted parent–offspring association) is pivotal in the evolution of cognition: it combines critical life-history, social and ecological conditions allowing for the development and maintenance of cognitive skillsets that confer fitness benefits to individuals. This novel hypothesis complements the extended childhood idea by considering the parents' role in juvenile development. Using phylogenetic comparative analyses, we show that corvids have larger body sizes, longer development times, extended parenting and larger relative brain sizes than other passerines. Case studies from two corvid species with different ecologies and social systems highlight the critical role of life-history features on juveniles’ cognitive development: extended parenting provides a safe haven, access to tolerant role models, reliable learning opportunities and food, resulting in higher survival. The benefits of extended juvenile learning periods, over evolutionary time, lead to selection for expanded cognitive skillsets. Similarly, in our ancestors, cooperative breeding and increased group sizes facilitated learning and teaching. Our analyses highlight the critical role of life-history, ecological and social factors that underlie both extended parenting and expanded cognitive skillsets. This article is part of the theme issue ‘Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals’.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1395 ◽  
Author(s):  
Maria Elena Miletto Petrazzini ◽  
Alessandra Pecunioso ◽  
Marco Dadda ◽  
Christian Agrillo

Several studies in mammals, birds, and fish have documented better cognitive abilities associated with an asymmetrical distribution of cognitive functions in the two halves of the brain, also known as ‘functional brain lateralization’. However, the role of brain lateralization in learning abilities is still unclear. In addition, although recent studies suggest a link between some personality traits and accuracy in cognitive tasks, the relation between anxiety and learning skills in Skinner boxes needs to be clarified. In the present study, we tested the impact of brain lateralization and anxiety-like behaviour in the performance of an extensive operant conditioning task. Zebrafish tested in a Skinner box underwent 500 trials in a colour discrimination task (red vs. yellow and green vs. blue). To assess the degree of lateralization, fish were observed in a detour test in the presence of a dummy predator, and anxiety-like behaviour was studied by observing scototaxis response in an experimental tank divided into light and dark compartments. Although the low performance in the colour discrimination task did not permit the drawing of firm conclusions, no correlation was found between the accuracy in the colour discrimination task and the behaviour in the detour and scototaxis tests. This suggests that neither different degrees of asymmetries in brain lateralization nor anxiety may significantly impact the learning skills of zebrafish.


2021 ◽  
Author(s):  
Catarina Vila Pouca ◽  
Sijmen Vedder ◽  
Alexander Kotrschal

Hybridization is an underappreciated mechanism of evolution. While hybrids often express inferior traits and are selected against, hybridization can promote phenotypic variation and produce trait combinations distinct from the parentals, generating novel adaptive potential. Among other traits, hybridization can impact behaviour and cognition and may reinforce species boundaries when hybrids show decreased cognitive abilities. However, the hypothesized role of hybridization in the diversification of cognitive phenotypes remains enigmatic. To test this idea, we compare the performance of guppies (Poecilia reticulata), Endler’s guppies (Poecilia wingei), and their experimental hybrids in colour association and reversal learning. In addition, we introduce a new approach to compare multidimensional cognitive phenotypes. We found that hybrids showed intermediate learning abilities in both tasks compared to the parentals. Moreover, hybrids had slightly higher phenotypic dispersion, new trait combinations occurred in some hybrid individuals, and the mean phenotype of one hybrid group deviated away from the axis of variation of the parentals. Our method should hence be useful in further exploring how hybridization, and other evolutionary processes, impact behavioural and cognitive traits. Our results suggest that hybridization may promote cognitive variation and generate new trait combinations, even when learning performance at the group level is intermediate between parentals.


2020 ◽  
Vol 60 (4) ◽  
pp. 925-928
Author(s):  
Sabrina S Burmeister ◽  
Yuxiang Liu

Synopsis A long-standing question in animal behavior is what are the patterns and processes that shape the evolution of cognition? One effective way to address this question is to study cognitive abilities in a broad spectrum of animals. While comparative psychologists have traditionally focused on a narrow range of organisms, today they may work with any number of species, from frogs to birds or bees. This broader range of study species has greatly enriched our understanding of the diversity of cognitive processes among animals. Yet, this diversity has highlighted the fundamental challenge of comparing cognitive processes across animals. An analysis of the neural and molecular mechanisms of cognition may be necessary to solve this problem. The goal of our symposium was to bring together speakers studying a range of species to gain a broadly integrative perspective on cognition while at the same time considering the potentially important role of neurobiology and genomics in addressing the difficult problem of comparing cognition across species. For example, work by MaBouDi et al. indicates that neural constraints on computing power may impact the cognitive processes underlying numerical discrimination in bees. A presentation by Lara LaDage demonstrated how neurobiology can be used to better understand cognition and its evolution in reptiles while Edwards et al. identify the cerebellum as potentially important in the performance of the complex process of nest building. We see that molecular approaches highlight the contributions of the prefrontal cortex and hippocampus to cognitive phenotype across vertebrates while, at the same time, identifying the genes and cellular processes that may contribute to evolution of cognition. The potentially important role of neurogenesis and synaptic plasticity emerge clearly from such studies. Still unanswered is the question of whether molecular tools will contribute to our ability to discriminate convergent/parallel evolution from homology in the evolution of cognitive phenotype.


2019 ◽  
Author(s):  
Diana Pili-Moss

The present article examines the role of child cognitive abilities for implicit/procedural and declarative learning in the earliest stages of L2 exposure. Fifty-three L1 Italian monolingual children were aurally trained in a novel miniature language over three consecutive days in the context of a computerized game paradigm previously deployed in adult studies investigating relationships between L2 outcomes and long-term memory. A mixed effects model of the relationship between cognitive predictors and outcomes in morphosyntax (measured via a grammaticality judgment test) revealed that, unlike what previously observed in adults with comparable language exposure, procedural learning ability was a significant predictor of learning of word order. By contrast, declarative learning abilities predicted accuracy in sentence comprehension during the gaming task, although the model evidenced that an increasing role of procedural learning ability as practice progressed, as well as a negative interaction between declarative and procedural learning abilities, were also significant factors.


2021 ◽  
Author(s):  
Catarina Vila Pouca ◽  
David Joseph Mitchell ◽  
Jérémy Lefèvre ◽  
Regina Vega-Trejo ◽  
Alexander Kotrschal

Predation risk during early ontogeny can impact developmental trajectories and permanently alter adult phenotypes. Such phenotypic plasticity often leads to adaptive changes in traits involved in anti-predator responses. While plastic changes in cognition may increase survival, it remains unclear whether early predation experience shapes cognitive investment and drives developmental plasticity in cognitive abilities. Here, we show that predation risk during early ontogeny induces developmental plasticity in two cognitive domains. We reared guppies (Poecilia reticulata) with and without predator cues and tested their adult cognitive abilities. We found that animals reared under simulated predation took longer to learn a simple association task, yet outperformed animals reared without predation threat in a reversal learning task testing cognitive flexibility. These results show that predation pressure during ontogeny shapes adult cognitive abilities, which we argue is likely to be adaptive. Our study highlights the important role of predator-mediated developmental plasticity on cognitive investment in natural populations and the general role of plasticity in cognitive performance.


2020 ◽  
Vol 43 ◽  
Author(s):  
Andrew Whiten

Abstract The authors do the field of cultural evolution a service by exploring the role of non-social cognition in human cumulative technological culture, truly neglected in comparison with socio-cognitive abilities frequently assumed to be the primary drivers. Some specifics of their delineation of the critical factors are problematic, however. I highlight recent chimpanzee–human comparative findings that should help refine such analyses.


2017 ◽  
Vol 14 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Melissa Kelly

This article uses the concepts of ‘transnational social fields’ and ‘habitus’ to explore the multifaceted role families play in shaping the aspirations of onward migrating youth. The article draws on biographical life history interviews conducted with the children of Iranian migrants who were raised in Sweden but moved to London, UK as adults. The findings of the study suggest that from a young age, all the participants were pressured by their parents to perform well academically, and to achieve high level careers. These goals were easier to achieve in London than in Sweden for several reasons. Interestingly, however, participants’ understandings of what constituted success and their motivations for onward migration were nuanced and varied considerably by gender. The study contributes to an understanding of the role of multi-sited transnational social fields in shaping the aspirations of migrant youths, as well as the strategies taken up by these migrants to achieve their goals.


Sign in / Sign up

Export Citation Format

Share Document