scholarly journals Impact of sustainable land-use management practices on soil carbon sequestration and soil quality in the west coast of India

Author(s):  
Paramesh Venkatesh ◽  
SURENDRA SINGH ◽  
Deepak Mohekar ◽  
Vadivel Arunachalam ◽  
Shiva Misra ◽  
...  

The evaluation of sustainable land management practices is imperative under particular soil type, climate, and cropping sequence following area-specific best management practices. The alternative land-use system (ALUS-natural forest, pasture, cashew, areca nut, coconut) on hills and agricultural land-use system (AGLUS-rice-rice, rice-pulse) in the coastal plains of west coast India was evaluated in this study. The present study assessed the impact of sustainable land-use management practices on different fractions of SOC and soil quality under ALUS and AGLUS. The total SOC stocks under different land-use systems varied from 14.4 Mg ha−1 in rice–rice rotations to 133.7 Mg ha−1 in cashew and more than 75% of total SOC stock were found as a passive carbon pool. The higher lability index, available nutrients, and biochemical properties were found in ALUS. This variation in the levels of SOC and soil quality was due to land use and management practices. The results indicated land use with areca nut (0.8) on the hills and rice–pulses (0.25) rotations on the coast had maintained soil quality of high order. On upscaling the different land-use systems by growing cashew, areca nut, coconut, pasture, and rice-pulses rotations, SOC stocks of Goa can increase from 6.33 Tg at present to 32 Tg. We recommend promoting sustainable agriculture with ALUS on the hills and with AGLUS on the coastal plains of Goa for enhancing SOC sequestration and improving soil quality.

Author(s):  
Venkatesh Paramesh ◽  
Surendra Kumar Singh ◽  
Deepak S. Mohekar ◽  
Vadivel Arunachalam ◽  
Shiva Dhar Misra ◽  
...  

SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 173-185 ◽  
Author(s):  
R. Zornoza ◽  
J. A. Acosta ◽  
F. Bastida ◽  
S. G. Domínguez ◽  
D. M. Toledo ◽  
...  

Abstract. Soil quality (SQ) assessment has long been a challenging issue, since soils present high variability in properties and functions. This paper aims to increase the understanding of SQ through the review of SQ assessments in different scenarios providing evidence about the interrelationship between SQ, land use and human health. There is a general consensus that there is a need to develop methods to assess and monitor SQ for assuring sustainable land use with no prejudicial effects on human health. This review points out the importance of adopting indicators of different nature (physical, chemical and biological) to achieve a holistic image of SQ. Most authors use single indicators to assess SQ and its relationship with land uses – soil organic carbon and pH being the most used indicators. The use of nitrogen and nutrient content has resulted sensitive for agricultural and forest systems, together with physical properties such as texture, bulk density, available water and aggregate stability. These physical indicators have also been widely used to assess SQ after land use changes. The use of biological indicators is less generalized, with microbial biomass and enzyme activities being the most selected indicators. Although most authors assess SQ using independent indicators, it is preferable to combine some of them into models to create a soil quality index (SQI), since it provides integrated information about soil processes and functioning. The majority of revised articles used the same methodology to establish an SQI, based on scoring and weighting of different soil indicators, selected by means of multivariate analyses. The use of multiple linear regressions has been successfully used for forest land use. Urban soil quality has been poorly assessed, with a lack of adoption of SQIs. In addition, SQ assessments where human health indicators or exposure pathways are incorporated are practically inexistent. Thus, further efforts should be carried out to establish new methodologies to assess soil quality not only in terms of sustainability, productivity and ecosystem quality but also human health. Additionally, new challenges arise with the use and integration of stable isotopic, genomic, proteomic and spectroscopic data into SQIs.


2014 ◽  
Vol 2 (3) ◽  
pp. 265-269 ◽  
Author(s):  
R.P. Chauhan ◽  
K.R. Pande ◽  
S. Thakur

Field experiments were conducted in acidic soils of Mangalpur and Fulbari VDCs in western Chitwan, Nepal to study the effects of different land use systems on soil properties. Seven land use systems (cereal based lowland, cereal based upland, vegetable farm land, fruit orchard land, pasture land, forest land and farmer’s field) were used and they were replicated four times in randomized complete block designs. Composite soil samples were collected from each study sites and were analyzed in laboratory for soil physicochemical properties. The data obtained were analyzed using MSTAT-C. Soil properties were significantly affected by land use systems in western Chitwan condition. Soil organic matter and total soil nitrogen were significantly higher from pasture land (4.69 % and 0.23 %) and the lowest were from farmer’s field (2.40 % and 0.08 %). However, available soil phosphorous content was significantly higher from cereal based upland (448.3 kg ha-1) and it was the lowest from forest land (13.0 kg ha-1). Soil bulk density and pH were not significantly affected by land use systems. Since land use systems and management practices significantly affect soil physical and chemical properties, an appropriate and sustainable land use management option is necessary for fertile and healthy soil. Conservation tillage with the addition of sufficient organic inputs can be suggested based on this study to maintain soil health for sustained production and optimum activity of soil organisms under the western Chitwan land use systems. DOI: http://dx.doi.org/10.3126/ijasbt.v2i3.10660  DOI: http://dx.doi.org/10.3126/ijasbt.v2i3.10660 Int J Appl Sci Biotechnol, Vol. 2(3): 265-269  


Author(s):  
B. O. Adebo ◽  
A. O. Aweto ◽  
K. Ogedengbe

Soil quality in an agroecosytem is considerably influenced by land use and management practices. Twenty two potential soil quality indicators were used to assess the effects of five different land use types (arable land, plantation, agroforestry, marginal land and native forest) on soil quality in Akufo and Atan farm settlements in Ibadan, southwestern Nigeria. A total of sixty-two fields were selected from which soil samples were taken at a depth of 0-15 cm and subjected to laboratory analysis. Majority of the evaluated physicochemical properties varied significantly among the land uses and whereas native land performed relatively better for most of the observed attributes, arable and marginal lands performed worse. Due to the moderate to strong significant correlation among the potential indicators, they were subjected to principal component analysis and only seven indicators were selected to compute the soil quality index (SQI). In both Akufo and Atan, native land had the highest SQI (0.8250 and 0.860 respectively) which was significantly different (P = .05) from all the agricultural land uses, except plantation (0.739 and 0.750 respectively). Whereas marginal field in Atan was most degraded (SQI = 0.455), it was closely followed by arable fields in both locations. This study indicates that the current agricultural land use and soil management practices in Akufo and Atan farm settlements have negatively impacted soil quality; however, the degree of degradation was strongly influenced by the concentration of soil organic carbon in the understudied land use systems. It also emphasizes the need to promote the use of sustainable management practices among agricultural land users, so as to increase soil organic carbon stock, and improve soil quality and land productivity.


2021 ◽  
Vol 9 (1) ◽  
pp. 53-63
Author(s):  
R. Srinivasan ◽  
S.K. Gangopadhyay ◽  
S.K. Reza ◽  
Rajendra Hegde ◽  
S.K. Singh

2014 ◽  
Vol 1 (1) ◽  
pp. 463-495
Author(s):  
R. Zornoza ◽  
J. A. Acosta ◽  
F. Bastida ◽  
S. G. Domínguez ◽  
D. M. Toledo ◽  
...  

Abstract. Soil quality (SQ) assessment has been a challenging issue since soils present high variability in properties and functions. This paper aims to increase understanding of SQ through review of SQ assessments in different scenarios providing evidence about the interrelationship between SQ, land use and human health. There is a general consensus that there is a need to develop methods to assess and monitor SQ for assuring sustainable land use with no prejudicial effects on human health. This review points out the importance of adopting indicators of different nature (physical, chemical and biological) to achieve a holistic image of SQ. Most authors use single indicators to assess SQ and its relationship with land uses, being the most used indicators soil organic carbon and pH. The use of nitrogen and nutrients content has resulted sensitive for agricultural and forest systems, together with physical properties such as texture, bulk density, available water and aggregate stability. These physical indicators have also been widely used to assess SQ after land use changes. The use of biological indicators is less generalized, being microbial biomass and enzyme activities the most selected indicators. Although most authors assess SQ using independent indicators, it is preferable to combine some of them into models to create a soil quality index (SQI), since it provides integrated information about soil processes and functioning. The majority of revised articles used the same methodology to establish a SQI, based on scoring and weighting of different soil indicators, selected by multivariate analyses. The use of multiple linear regressions has been successfully used under forest land use. Urban soil quality has been poorly assessed, with lack of adoption of SQIs. In addition, SQ assessments were human health indicators or exposure pathways are incorporated are practically inexistent. Thus, new efforts should be carried out to establish new methodologies not only to assess soil quality in terms of sustainability, productivity and ecosystems quality, but also human health. Additionally, new challenges arise with the use and integration into SQIs of stable isotopic, genomic, proteomic and spectroscopy data.


2010 ◽  
Vol 56 (No. 7) ◽  
pp. 348-356 ◽  
Author(s):  
D.W. Gui ◽  
J.Q. Lei ◽  
F.J. Zeng

Oasification and desertification are basic geographical processes in arid areas, and both change the soil properties and quality. Recently, oasification has been obvious in the southern rim of the Tarim Basin of Xinjiang, China, and agriculture is the main land-use type. There has been little research on oasification involving farmland of different management types in extremely arid regions. In 2004, four experimental fields were established in the Cele Oasis, representing four typical land-use types of local farmers' tillage practices during oasification. Three experimental fields were situated in the desert-oasis ecotone: newly cultivated land (NEF), a field with normal manure input (NMF), and a field with high manure input (HMF); there was also another field in the oasis interior (OIF), to allow analysis of the management effects on soil properties and soil quality of farmlands. Additionally, the soil from an uncultivated control plot was analyzed for comparison. Both a Soil Quality Index based on soil properties and a Sustainable Yield Index based on yearly yield were used to assess the soil quality of the different farmlands. There were significant differences in seven soil indicators, including soil particle size distribution and soil organic matter, between the four locations. NEF had the lowest and OIF the highest values in all assessments among the five experiment plots. Fertilization of NMF and HMF had positive effects on soil properties and soil quality; however, the sustainable productivity of these farmlands was low. The results should be beneficial for refining agricultural management practices and improving sustainable land use in the oasification process.


2021 ◽  
Vol 13 (3) ◽  
pp. 1398
Author(s):  
Tavjot Kaur ◽  
Simerpreet Kaur Sehgal ◽  
Satnam Singh ◽  
Sandeep Sharma ◽  
Salwinder Singh Dhaliwal ◽  
...  

The present study was conducted to investigate the seasonal effects of five land use systems (LUSs), i.e., wheat–rice (Triticum aestivum—Oryza sativa) system, sugarcane (Saccharum officinarum), orange (Citrus sinensis) orchard, safeda (Eucalyptus globules) forest, and grassland, on soil quality and nutrient status in the lower Satluj basin of the Shiwalik foothills Himalaya, India. Samples were analyzed for assessment of physico-chemical properties at four soil depths, viz., 0–15, 15–30, 30–45, and 45–60 cm. A total of 120 soil samples were collected in both the seasons. Soil texture was found to be sandy loam and slightly alkaline in nature. The relative trend of soil organic carbon (SOC), macro- and micro-nutrient content for the five LUSs was forest > orchard > grassland > wheat–rice > sugarcane, in the pre- and post-monsoon seasons. SOC was highly correlated with macronutrients and micronutrients, whereas SOC was negatively correlated with soil pH (r = −0.818). The surface soil layer (0–15 cm) had a significantly higher content of SOC, and macro- and micro-nutrients compared to the sub-surface soil layers, due to the presence of more organic content in the soil surface layer. Tukey’s multiple comparison test was applied to assess significant difference (p < 0.05) among the five LUSs at four soil depths in both the seasons. Principle component analysis (PCA) identified that SOC and electrical conductivity (EC) were the most contributing soil indicators among the different land use systems, and that the post-monsoon season had better soil quality compared to the pre-monsoon season. These indicators helped in the assessment of soil health and fertility, and to monitor degraded agroecosystems for future soil conservation.


2011 ◽  
Vol 11 (5) ◽  
pp. 1074-1083 ◽  
Author(s):  
Ulrike Weiland ◽  
Annegret Kindler ◽  
Ellen Banzhaf ◽  
Annemarie Ebert ◽  
Sonia Reyes-Paecke

Sign in / Sign up

Export Citation Format

Share Document