scholarly journals Primal-dual interior point methods for Semidefinite programming based on a new type of kernel functions

Filomat ◽  
2020 ◽  
Vol 34 (12) ◽  
pp. 3957-3969
Author(s):  
Imene Touil ◽  
Wided Chikouche

In this paper, we propose the first hyperbolic-logarithmic kernel function for Semidefinite programming problems. By simple analysis tools, several properties of this kernel function are used to compute the total number of iterations. We show that the worst-case iteration complexity of our algorithm for large-update methods improves the obtained iteration bounds based on hyperbolic [24] as well as classic kernel functions. For small-update methods, we derive the best known iteration bound.

2009 ◽  
Vol 26 (03) ◽  
pp. 365-382 ◽  
Author(s):  
M. REZA PEYGHAMI

Kernel functions play an important role in interior point methods (IPMs) for solving linear optimization (LO) problems to define a new search direction. In this paper, we consider primal-dual algorithms for solving Semidefinite Optimization (SDO) problems based on a new class of kernel functions defined on the positive definite cone [Formula: see text]. Using some appealing and mild conditions of the new class, we prove with simple analysis that the new class-based large-update primal-dual IPMs enjoy an [Formula: see text] iteration bound to solve SDO problems with special choice of the parameters of the new class.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
X. Z. Cai ◽  
G. Q. Wang ◽  
M. El Ghami ◽  
Y. J. Yue

We introduce a new parametric kernel function, which is a combination of the classic kernel function and a trigonometric barrier term, and present various properties of this new kernel function. A class of large- and small-update primal-dual interior-point methods for linear optimization based on this parametric kernel function is proposed. By utilizing the feature of the parametric kernel function, we derive the iteration bounds for large-update methods,O(n2/3log⁡(n/ε)), and small-update methods,O(nlog⁡(n/ε)). These results match the currently best known iteration bounds for large- and small-update methods based on the trigonometric kernel functions.


2020 ◽  
Vol 28 (1) ◽  
pp. 27-41
Author(s):  
Benhadid Ayache ◽  
Saoudi Khaled

AbstractIn this paper, we propose a large-update primal-dual interior point algorithm for linear optimization. The method is based on a new class of kernel functions which differs from the existing kernel functions in which it has a double barrier term. The investigation according to it yields the best known iteration bound O\sqrt n \log (n)\log \left( {{n \over \in }} \right) for large-update algorithm with the special choice of its parameter m and thus improves the iteration bound obtained in Bai et al. [2] for large-update algorithm.


Filomat ◽  
2020 ◽  
Vol 34 (5) ◽  
pp. 1471-1486
Author(s):  
S. Fathi-Hafshejani ◽  
Reza Peyghami

In this paper, a primal-dual interior point algorithm for solving linear optimization problems based on a new kernel function with a trigonometric barrier term which is not only used for determining the search directions but also for measuring the distance between the given iterate and the ?-center for the algorithm is proposed. Using some simple analysis tools and prove that our algorithm based on the new proposed trigonometric kernel function meets O (?n log n log n/?) and O (?n log n/?) as the worst case complexity bounds for large and small-update methods. Finally, some numerical results of performing our algorithm are presented.


1997 ◽  
Vol 79 (1-3) ◽  
pp. 235-253 ◽  
Author(s):  
Katsuki Fujisawa ◽  
Masakazu Kojima ◽  
Kazuhide Nakata

Acta Numerica ◽  
1996 ◽  
Vol 5 ◽  
pp. 149-190 ◽  
Author(s):  
Adrian S. Lewis ◽  
Michael L. Overton

Optimization problems involving eigenvalues arise in many different mathematical disciplines. This article is divided into two parts. Part I gives a historical account of the development of the field. We discuss various applications that have been especially influential, from structural analysis to combinatorial optimization, and we survey algorithmic developments, including the recent advance of interior-point methods for a specific problem class: semidefinite programming. In Part II we primarily address optimization of convex functions of eigenvalues of symmetric matrices subject to linear constraints. We derive a fairly complete mathematical theory, some of it classical and some of it new. Using the elegant language of conjugate duality theory, we highlight the parallels between the analysis of invariant matrix norms and weakly invariant convex matrix functions. We then restrict our attention further to linear and semidefinite programming, emphasizing the parallel duality theory and comparing primal-dual interior-point methods for the two problem classes. The final section presents some apparently new variational results about eigenvalues of nonsymmetric matrices, unifying known characterizations of the spectral abscissa (related to Lyapunov theory) and the spectral radius (as an infimum of matrix norms).


Sign in / Sign up

Export Citation Format

Share Document