scholarly journals An efficient synthesis of novel triazoles incorporating barbituric motifs via [3+2] cycloaddition reaction: An experimental and theoretical study

2018 ◽  
Vol 83 (7-8) ◽  
pp. 821-835 ◽  
Author(s):  
Mahdieh Darroudi ◽  
Yaghoub Sarrafi ◽  
Mahshid Hamzehloueian

In this work, the synthesis of novel triazole derivatives with barbituric motifs in good yields is described. The alkyne was prepared through the Knoevenagel reaction of barbituric derivatives with ortho and para O-propargylated hydroxybenzaldehyde. The mechanism and regioselectivity of this [3+2] cycloaddition reaction were investigated using the density functional theory at the B3LYP/6-31+G(d) level of theory. The computational studies revealed that a di-copper catalyzed stepwise mechanism, involving six-membered ring intermediate, is the preferred pathway. The regioselectivity was explained in terms of frontier molecular orbital (FMO) interactions, local and global electrophilicity and nucleophilicity indices. Accordingly, the favored interactions for di-copper acetylide are in good agreement with the observed regioselectivity, while completely opposite results were obtained for a possible uncatalysed reaction.

2012 ◽  
Vol 535-537 ◽  
pp. 214-218
Author(s):  
Qi Xin Wan ◽  
Jia Yi Chen ◽  
Zhi Hua Xiong ◽  
Dong Mei Li ◽  
Bi Lin Shao ◽  
...  

The first-principles with pseudopotentials method based on the density functional theory was applied to calculate the geometric structure, the formation energy of impurities and the electronic structure of Li-doped ZnO. In the system of Li-doped ZnO, LiZn can not result in lattice distortion. In contrast with that case, LiO and Lii result in lattice distortion after Li doping in ZnO. In Li-doped ZnO, LiO is the most unstable than the other cases. Simultaneously, Lii is more stable than LiZn according to that Lii has smaller formation energy. Furthermore, the electronic structure of Li-doped ZnO indicates that that LiZn behaves as acceptor, while Lii behaves as donor. In conclusion, in Li-doped ZnO, Lii is always in the system to compensate the acceptor. Singly doping Li in ZnO is difficult to gain p-ZnO for the self-compensation. The results are in good agreement with other calculated and experimental results.


RSC Advances ◽  
2015 ◽  
Vol 5 (28) ◽  
pp. 21823-21830 ◽  
Author(s):  
Xueli Zhang ◽  
Junqing Yang ◽  
Ming Lu ◽  
Xuedong Gong

The potential energetic materials, alkaline earth metal complexes of the pentazole anion (M(N5)2, M = Mg2+, Ca2+, Sr2+and Ba2+), were studied using the density functional theory.


2021 ◽  
Vol 37 (4) ◽  
pp. 805-812
Author(s):  
Ahissandonatien Ehouman ◽  
Adjoumanirodrigue Kouakou ◽  
Fatogoma Diarrassouba ◽  
Hakim Abdel Aziz Ouattara ◽  
Paulin Marius Niamien

Our theoretical study of stability and reactivity was carried out on six (06) molecules of a series of pyrimidine tetrazole hybrids (PTH) substituted with H, F, Cl, Br, OCH3 and CH3 atoms and groups of atoms using the density function theory (DFT). Analysis of the thermodynamic formation quantities confirmed the formation and existence of the series of molecules studied. Quantum chemical calculations at the B3LYP / 6-311G (d, p) level of theory determined molecular descriptors. Global reactivity descriptors were also determined and analyzed. Thus, the results showed that the compound PTH_1 is the most stable, and PTH_5 is the most reactive and nucleophilic. Similarly, the compound PTH_4 is the most electrophilic. The analysis of the local descriptors and the boundary molecular orbitals allowed us to identify the preferred atoms for electrophilic and nucleophilic attacks.


Open Physics ◽  
2008 ◽  
Vol 6 (1) ◽  
Author(s):  
Silvete Guerini ◽  
David Azevedo ◽  
Maria Lima ◽  
Ivana Zanella ◽  
Josué Filho

AbstractThis paper deals with quantum mechanical interaction of no 3− with (5,5) and (8,0) swcnts. To perform this we have made an ab initio calculation based on the density functional theory. In these framework the electronic density plays a central role and it was obtained of a self-consistent field form. It was observed through binding energy that NO3− molecule interacts with each nanotube in a physisorption regime. We propose these swcnts as a potential filter device due to reasonable interaction with NO3− molecule. Besides this type of filter could be reusable, therefore after the filtering, the swcnts could be separated from NO3− molecule.


2010 ◽  
Vol 09 (06) ◽  
pp. 619-622
Author(s):  
BOTHINA A. HAMAD

In this work, a theoretical study of the structural, electronic and magnetic properties are presented for Mn 0.5 Ni 0.5 alloyed overlayer adsorbed on Cu (001) surface. The calculations were performed using the density functional theory (DFT) and the exchange-correlation potential was treated by the generalized gradient approximation (GGA). The system was fully relaxed except for the central layer, which yields to outward relaxations and inward Mn and Ni surface atoms, respectively in the ferromagnetic and antiferromagnetic configurations. The in-plane ferromagnetic configuration was found to be more stable than the antiferromagnetic one by 25 meV/atom. The local magnetic moments of Mn atoms were found to be about 4 μ B , whereas those of the Ni atoms where found to be 0.46 μ B .


2015 ◽  
Vol 233-234 ◽  
pp. 229-232 ◽  
Author(s):  
Vladimir V. Sokolovskiy ◽  
Mikhail A. Zagrebin ◽  
Y.A. Sokolovskaya ◽  
Vasiliy D. Buchelnikov

The structural and magnetic properties of Mn-based stoichiometric Heusler alloys have investigated by means of ab initio calculations in framework of the density functional theory. First principles electronic structure calculations have shown that Mn2NiZ (Z = Ga, In, Sn, Sb) alloys are ferrimagnets with antiparallel alignment between the Mn atoms. The martensitic transition can be realized in Mn2NiGa and Mn2NiSn alloys with tetragonal ratio of 1.27 and 1.16, respectively. Calculated properties are in a good agreement with available experimental data.


2004 ◽  
Vol 832 ◽  
Author(s):  
Yuri Bonder ◽  
Chumin Wang

ABSTRACTOptical properties of birefringent porous-silicon layers are studied within the density functional theory. Starting from a (110)-oriented supercell of 32 silicon atoms, columns of atoms in directions [100] and [010] are removed and the dangling bonds are saturated with hydrogen atoms. The results show an in-plane anisotropy in the dielectric function and in the refractive index (n). The difference Δn defined as n[110] -n[001] is compared with experimental data and a good agreement is observed. Also, the possibility in determining the morphology of pores by using polarized lights is analyzed.


2007 ◽  
Vol 5 (1) ◽  
pp. 201-220 ◽  
Author(s):  
Khaled Bahgat ◽  
Abdel Ragheb

AbstractThe geometry, frequency and intensity of the vibrational bands of 8-hydroxyquinoline and its 5,7-dichloro, 5,7-dibromo, 5,7-diiodo and 5,7-dinitro derivatives were obtained by the density functional theory (DFT) calculations with Becke3-Lee-Parr (B3LYP) functional and 6-31G* basis set. The effects of chloride, bromide, iodide and nitro substituent on the vibrational frequencies of 8-hydroxyquinoline have been investigated. The assignments have been proposed with aid of the results of normal coordinate analysis. The observed and calculated spectra are found to be in good agreement.


2006 ◽  
Vol 419 (4-6) ◽  
pp. 326-332 ◽  
Author(s):  
Nobuaki Miura ◽  
Tohru Taniguchi ◽  
Kenji Monde ◽  
Shin-Ichiro Nishimura

Sign in / Sign up

Export Citation Format

Share Document