scholarly journals Microleakage of glass ionomer cement restorations

2009 ◽  
Vol 56 (2) ◽  
pp. 78-85 ◽  
Author(s):  
Lado Davidovic ◽  
Slavoljub Tomic ◽  
Mihael Stanojevic ◽  
Slavoljub Zivkovic

Introduction. A lack of appropriate adhesiveness is one of the biggest problems in the restorative dentistry today and the main cause of the microleakage between restorations and hard dental tissue. The aim of this study was to assess the adhesiveness of two different glass ionomer cement restorations class V on the hard dental tissue using the SEM analysis and dye penetration test. Material and methods. The study included 80 extracted teeth for orthodontic reasons (premolars and molars) in both genders and different age. On the vestibular and oral side of the teeth, adhesive preparations class V were done (size 3?2?2 mm). On the vestibular preparation, GC Fuji II was applicated and GC Fuji II LC-improved on the oral side. The quality of the adhesiveness between restorations and hard dental tissue was evaluated using the SEM analysis and dye penetration test (0.5% basic fuxsin). Linear penetration of the dye was observed using 10 times magnification. Results. The results showed that microleakage was presented with both materials but a ratio was less with Fuji II LC compared with Fuji II. Also, the microleakage was less on the occlusal parts of the restorations than on the gingival, with both materials. Microleakage was noticed in 93.44% teeth with Fuji II GJC restorations with index of microleakage of 148 on all edges. Fuji II LC GJC restorations showed microleakage in 68.4% teeth with index of microleakage 75 on all edges. The SEM analysis showed that both glass ionomer materials had better adhesiveness to the enamel than to the dentin. The average gap length between Fuji II LC and dentin was 9 ?m and Fuji II 17 ?m, respectively. Conclusion. Better adhesiveness to the hard dental tissue was achieved with materials of the newer generations, resin modificated glas ionomer cements.

2013 ◽  
Vol 60 (2) ◽  
pp. 85-92
Author(s):  
Lado Davidovic ◽  
Nikola Stojanovic ◽  
Jelena Krunic ◽  
Slavoljub Zivkovic

Introduction. Lack of proper adhesion is one of the most common problems in modern restorative dentistry and the main cause of the occurrence of microcracks at the interface between materials and hard dental tissue. The aim of this study was to assess the quality of bond between two types of glass-ionomer cement (GIC) class V restorations and hard dental tissues by SEM. Materials and Methods. This clinical study included 20 intact teeth (premolars and molars) recently extracted for orthodontic reasons in patients of both genders and different ages. Class V cavity with rounded walls was prepared on vestibular and oral surfaces of all teeth (3x2x2 mm). Conventional GIC Fuji II was applied on vestibular surface of teeth whereas on oral surface resin-reinforced glass ionomer Fuji II LC was placed. The bond between fillings and hard dental tissue was assessed by SEM. Results. Both materials showed microcracks, however, microleakage was lower with Fuji II LC than with Fuji II. Microcracks were observed in 65% of cases (13 restorations) restored with GIC Fuji II and 35% (7 fillings) restored with GIC Fuji II LC. The size of microcracks for Fuji II LC was 9 ?m while this value for Fuji II was 17 ?m. The difference was statistically significant. Conclusion. Better bond between material and hard dental tissue was achieved with the material of new generation, resin modified GIC.


Author(s):  
Dayanand Chole ◽  
Preeti Vaprani ◽  
Priyanka Bawa ◽  
Neha Gandhi ◽  
Nikhil Hatte ◽  
...  

ABSTRACT: “AIM: To assess the effect of three lining materials; flowable composite, flowable compomer, and light-curing glass ionomer cement (LCGIC) on microleakage in Class V restoration using packable composite restorations. MATERIALS AND METHODS: A standardized class V cavity was prepared on buccal surface of 40 young premolar teeth with the cervical margin extending 0.5 mm below the cementoenamel junction, into the dentin. All the samples were randomly divided into 4 groups according to the lining material used: Group I- Control; Group II- flowable composite; Group III- LCGIC and Group IV- flowable compomer. The restored teeth were thermocycled and immersed in 2% methylene blue solution for 24 hours. Each tooth was then sectioned along buccolingual direction. The dye penetration of the occlusal and gingival margins of each section was evaluated by a single observer using a stereomicroscope and statistically analyzed using Kruskal Walis Test and Mann-Whitney U Test. RESULT: Maximum dye penetration score for Group 1, Group 2 was 3 and Group 3, Group 4 was 1. (p<0.05) CONCLUSION: Flowable compomer and light cure glass ionomer cement as intermediate lining material can reduce microleakage under packable composite. Keywords: Compomer, flowable composite, light-curing glass ionomer cement, microleakage, packable composite.”


2001 ◽  
Vol 15 (4) ◽  
pp. 277-282 ◽  
Author(s):  
Maria Fernanda Borro BIJELLA ◽  
Maria Francisca Thereza Borro BIJELLA ◽  
Salete Moura Bonifácio da SILVA

This study evaluated, in vitro, marginal microleakage in class II restorations confected with the glass ionomer cement Vitremer and with the composite resins Ariston pHc and P-60. The aims of the study were to assess the effect of thermocycling on those materials and to evaluate two methods utilized in the analysis of dye penetration. Sixty premolars divided in three groups were utilized; the teeth had proximal cavities whose cervical walls were located 1 mm below the cementoenamel junction. Half of the test specimens from each group underwent thermocycling; the other half remained in deionized water, at 37ºC. The specimens were immersed, for 24 hours, in a basic 0.5% fuchsin solution at 37ºC. For the analysis of microleakage, the specimens were sectioned in a mesio-distal direction, and the observation was carried out with the software Imagetools. The results were evaluated through the 2-way ANOVA and through the Tukey’s test. All groups presented marginal microleakage. The smallest values were obtained with Vitremer, followed by those obtained with the composite resins P-60 and Ariston pHc. There was no statistically significant difference caused by thermocycling, and the method of maximum infiltration was the best for detecting the extension of microleakage.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Sabine O. Geerts ◽  
Laurence Seidel ◽  
Adelin I. Albert ◽  
Audrey M. Gueders

This study was designed to evaluate microleakage that appeared on Resin-Modified Glass-Ionomer Cement (RMGIC) restorations. Sixty class V cavities () were cut on thirty extracted third molars, which were randomly allocated to three experimental groups. All the buccal cavities were pretreated with polyacrylic acid, whereas the lingual cavities were treated with three one-step Self-Etch adhesives, respectively, Xeno III (Dentsply Detrey GmbH, Konstanz, Germany), iBond exp (Heraeus Kulzer gmbH & Co. KG, Hanau, Germany), and Adper Prompt-L-Pop (3M ESPE AG, Dental products Seefeld, Germany). All cavities were completely filled with RMGIC, teeth were thermocycled for 800 cycles, and leakage was evaluated. Results were expressed as means standard deviations (SDs). Microleakage scores were analysed by means of generalized linear mixed models (GLMMs) assuming an ordinal logistic link function. All results were considered to be significant at the 5% critical level (). The results showed that bonding RMGIC to dentin with a Self-Etch adhesive rather than using polyacrylic acid did not influence microleakage scores (), except for one tested Self-Etch adhesive, namely, Xeno III (). Nevertheless, our results did not show any significant difference between the three tested Self-Etch adhesive systems. In conclusion, the pretreatment of dentin with Self-Etch adhesive system, before RMGIC filling, seems to be an alternative to the conventional Dentin Conditioner for the clinicians as suggested by our results (thermocycling) and others (microtensile tests).


2010 ◽  
Vol 35 (6) ◽  
pp. 634-640 ◽  
Author(s):  
H. Yu ◽  
Q. Li ◽  
T. Attin ◽  
Y. Wang

Clinical Relevance Carbamide peroxide treatment increased the microleakage of Class V conventional glass-ionomer cement and resin modified glass-ionomer cement restorations. The resin coating is an effective method to avoid bleaching-induced microleakage without affecting the bleaching outcome.


2021 ◽  
Vol 10 (33) ◽  
pp. 2769-2772
Author(s):  
Arjun Sajjeev ◽  
Ashwini Tumkur Shivkumar ◽  
Sowmya Halasabalu Kalgeri

BACKGROUND Marginal integrity of glass ionomer as a restorative material is an important factor for the longevity of the restoration. Class V and cervical abrasions are the most critical and challenging lesions for restorations. The choice of material for restoring class V and cervical abrasions is glass ionomer cement (GIC). Sensitivity to moisture contact during the early setting stages is the drawback of GIC. To overcome the drawback, modifications of glass ionomer cement were made by the addition of chitosan. Chitosan (CH) is a natural linear polysaccharide obtained partially and fully by deacetylated chitin compounds, which are found in crab and shrimp shells, with properties like nontoxicity, biodegradability, bioadhesive, biocompatibility, and biorenewabilty which has led to its use in various fields. Thus, this study intended to evaluate the microleakage of conventional glass ionomer cement and chitosan modified glass ionomer cement using a spectrophotometer. METHODS 60 teeth extracted for orthodontic propose were selected for the study and randomly divided into two groups, class V cavities were prepared on the buccal surface and samples were restored with conventional glass ionomer cement and chitosan modified glass ionomer cement respectively, teeth were immersed in 0.5 % methylene blue for 24 hours and assessed using a spectrophotometer. RESULTS The data were analysed using the Unpaired T - test, and with statistical package for social sciences (SPSS) for Windows, version 25.0 (IBM Corp., Armonk, N.Y., USA). The confidence interval was set at 95 % and values of P < 0.05 were interpreted as statistically significant. CONCLUSIONS The study concluded that the addition of chitosan improves the mechanical properties of conventional glass ionomer cement, and a spectrophotometer can be used as a better evaluation tool in assessing microleakage. KEY WORDS Chitosan Modified GIC, Glass Ionomer Cement, Microleakage, Spectrophotometer


2013 ◽  
Vol 56 (3) ◽  
pp. 97-103 ◽  
Author(s):  
Prabath Singh ◽  
Joseph Paul ◽  
Abdul Aziz Al-Khuraif ◽  
Sajith Vellappally ◽  
Hassan Suliman Halawany ◽  
...  

Objectives: The purpose of this study was to evaluate the in vitro sealing ability of three repair materials. Mineral trioxide aggregate (MTA; Group A), calcium phosphate cement (CPC; Group B), and light cured glass ionomer cement (GIC; Group C) when used to repair the perforation created in the pulpal floor of fifty extracted human permanent molars. Materials and methods: Preparation of access openings and furcation perforations were done, and the teeth divided into five experimental groups (A, B, C) including two controls (D, E) with ten samples in each group randomly. Following the repair procedure, the pulp chambers and access openings were filled with composite resin and immersed in 2% methylene blue solution for 48 hours. The teeth were sectioned longitudinally and the linear dye penetration measured under a stereo­microscope. Results: The comparison of the linear length of micro-leakage (mm) among the experimental groups revealed no significant difference (p = 0.332). On calculating the percentage of depth of leakage to the total length of the perforation, it was observed that the mean leakage was 35.5% in Group A, 53.6% in Group B and the highest, 87.5% in Group C. The mean of leakage percentage was statistically significant by Kruskal-Wallis test (p = 0.003). The results indicated that the dye penetration used as furcation perforation repair material was least with mineral trioxide aggregate. Comparing the depth of penetration of dye, 50% of the Group A samples showed less than 25% of depth penetration. While 40% of Group B cases had more than 50% dye penetration. In our study, all Group C teeth had ≥ 50% dye penetration. Conclusions: The present study indicated that GIC had the greatest dye penetration followed by CPC and MTA. Mineral trioxide aggregate and calcium phosphate cement had comparatively better sealing ability than glass ionomer cement.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Zeinab M. Zaki ◽  
Maha A. Niazy ◽  
Mohamed H. Zaazou ◽  
Shaymaa M. Nagi ◽  
Dina W. Elkassas

Abstract Background The aim of this study was to compare the clinical performance of Nano-hydroxyapatite-modified conventional glass ionomer cement (NHA-GIC) and Nano-hydroxyapatite-modified resin-modified glass ionomer cement (NHA-RMGIC) with conventional glass ionomer (CGIC) and resin-modified glass ionomer (RMGIC) in the treatment of caries class V cavities. Sixty patients with at least two cervical caries lesions participated in this study. A total of 120 class V cavities were prepared and then restored using different restorative materials. Restorations were clinically evaluated according to modified United States Public Health Service criteria at baseline and after 3, 6 and 9 months. Results There was no statistically significant difference in the clinical performance of the different restorative materials at any of the follow-up periods. However, throughout the study period there was a statistically significant change in the color match, surface texture and marginal integrity in NHA-GIC. A statistically significant change in the surface texture and marginal integrity was found in GIC. On the other hand, there was only a statistically significant change in surface texture in NHA-RMGIC. Conclusions All tested restorative materials, control (CGIC and RMGIC) as well as experimental (NHA-GIC and NHA-RMGIC), exhibited comparable clinical performance after 9 months follow-up.


Author(s):  
Vanishree H. Shivakumar ◽  
Anand S. Tegginamani ◽  
Daniel Devaprakash Dicksit ◽  
Ahmad Termizi B Zamzuri

Aims: The study evaluated the sealing ability of Biodentine, MTA Repair HP, and Glass ionomer cement as perforation repair materials by using a Stereomicroscopic analysis. Study Design: Experimental in vitro study Methodology: The access cavity was prepared on 45 samples of maxillary and mandibular teeth with a perforation of the standardized diameter of a No. 2 round bur at the bottom of the pulp chamber. All 45 samples were divided into three different experimental groups of 15 samples each. Group A (n=15), Group B (n=15) and Group C (n=15). The furcation repairs of the samples in groups A, B and C were carried out using Biodentine, MTA Repair HP and glass ionomer cement respectively. All sealed furcation perforation samples were stored at room temperature for 24 hours. Two layers of nail varnish were coated on all the surfaces to avoid dye penetration except for 2 mm around the area of the perforation site. After complete drying, all specimens were separately soaked in 2% methylene blue solution for 48 hours, cleaned with water and dried for 24 hours. They were sectioned buccolingually. The perforation wall of the sectioned sample with the greatest dye penetration was selected for microleakage analysis. Results: The collected data from the three experimental groups were subjected to statistical analysis using one-way analysis of variance and Tukey's post hoc test for multiple comparisons of mean differences in dye penetration. The Biodentine group had the significantly lowest dye penetration length compared with the MTA Repair HP and glass ionomer cement groups (P<0.001). Conclusion: Biodentine showed better sealing ability as a repair material for furcation perforations compared to the other two materials.


Sign in / Sign up

Export Citation Format

Share Document