scholarly journals Energy and exergy analysis of a combined refrigeration and waste heat driven organic Rankine cycle system

2017 ◽  
Vol 21 (6 Part A) ◽  
pp. 2621-2631 ◽  
Author(s):  
Ertugrul Cihan ◽  
Barıs Kavasogullari

Energy and exergy analysis of a combined refrigeration and waste heat driven organic Rankine cycle system were studied theoretically in this paper. In order to complete refrigeration process, the obtained kinetic energy was supplied to the compressor of the refrigeration cycle. Turbine, in power cycle, was driven by organic working fluid that exits boiler with high temperature and pressure. Theoretical performances of proposed system were evaluated employing five different organic fluids which are R123, R600, R245fa, R141b, and R600a. Moreover, the change of thermal and exergy efficiencies were examined by changing the boiling, condensing, and evaporating temperatures. As a result of energy and exergy analysis of the proposed system, most appropriate organic working fluid was determined as R141b.

2019 ◽  
Vol 9 (23) ◽  
pp. 5028 ◽  
Author(s):  
Pektezel ◽  
Acar

This paper presents energy and exergy analysis of two vapor compression refrigeration cycles powered by organic Rankine cycle. Refrigeration cycle of combined system was designed with single and dual evaporators. R134a, R1234ze(E), R227ea, and R600a fluids were used as working fluids in combined systems. Influences of different parameters such as evaporator, condenser, boiler temperatures, and turbine and compressor isentropic efficiencies on COPsys and ƞex,sys were analyzed. Second law efficiency, degree of thermodynamic perfection, exergy destruction rate, and exergy destruction ratio were detected for each component in systems. R600a was determined as the most efficient working fluid for proposed systems. Both COPsys and ƞex,sys of combined ORC-single evaporator VCR cycle was detected to be higher than the system with dual evaporator.


2013 ◽  
Vol 448-453 ◽  
pp. 1509-1513 ◽  
Author(s):  
Guo Chang Zhao ◽  
Li Ping Song ◽  
Yong Wang ◽  
Xiao Chen Hou

A solar thermal organic Rankine cycle (ORC) power generation system model established using R245fa as the working fluid and coupled with a solar photovoltaic generator is introduced. Thermal efficiency and exergy efficiency of the model both with and without a heat regenerator are calculated and compared. Results show the solar organic Rankine cycle system with a heat regenerator has higher thermal and exergy efficiency than the system without a heat regenerator, providing better performance in practice. This result provides a basis for further application and improvement of solar photovoltaic and the solar thermal organic Rankine cycle.


Author(s):  
R. K. Bhargava ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
...  

This paper presents a study related with off-shore oil & gas production and processing facilities, where required energy, for electric power, mechanical power and process heat, is mostly produced using gas turbines, as the fuel source (natural gas) is available onsite. Since size and weight of all equipment on an offshore facility are critical, it becomes necessary for the facility engineering team to ensure that all equipment are sized and selected appropriately to obtain better return on the investment. Therefore, any approach which could help in utilizing energy resources effectively will influence the bottom-line of the project, namely reduced capital cost and/or increased return on investment. In this paper, one such approach of recovering power and thermal energy through the use of Organic Rankine Cycle system is discussed. A detailed thermo-economic analysis, conducted considering a system with four gas turbines operating, shows that power recovery equivalent to one topping gas turbine is achievable with a suitable working fluid. The presented thermo-economic analysis clearly shows that use of the Organic Rankine Cycle system for waste heat recovery is a technically viable and economically attractive solution for the offshore applications.


2015 ◽  
Vol 789-790 ◽  
pp. 391-397
Author(s):  
Ratha Z. Mathkor ◽  
Brian Agnew ◽  
Mohammed A. Al-Weshahi ◽  
Saleh Etaig

The paper presents a study of a thermal assessment of an Organic Rankine Cycle (ORC) energized by heat absorbed from a parabolic trough collector (PTC) located in Derna, Libya. Both the ORC and PTC are modeled using the IPSEpro software. The simulation results are used to evaluate the system performance using energy and exergy analysis. The study showed the PTC collector was the main contributor of the energy and exergy losses within the PTC system and the evaporator within in the ORC. At this specific weather conditions, the ORC was able to produce about 3 MW electrical powers from the powered PTC heat. Moreover, exergy efficiency of the PTC was 47.7 %, the heat engine was 23.3 % and for the overall system (PTC and ORC) was 11.1 %.


Sign in / Sign up

Export Citation Format

Share Document