Numerical Solution of Nonlinear Differential Equations with Algebraic Constraints I: Convergence Results for Backward Differentiation Formulas

1986 ◽  
Vol 46 (174) ◽  
pp. 491 ◽  
Author(s):  
Per Lotstedt ◽  
Linda Petzold
Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 914
Author(s):  
Zarina Bibi Ibrahim ◽  
Amiratul Ashikin Nasarudin

Recently, block backward differentiation formulas (BBDFs) are used successfully for solving stiff differential equations. In this article, a class of hybrid block backward differentiation formulas (HBBDFs) methods that possessed A –stability are constructed by reformulating the BBDFs for the numerical solution of stiff ordinary differential equations (ODEs). The stability and convergence of the new method are investigated. The methods are found to be zero-stable and consistent, hence the method is convergent. Comparisons between the proposed method with exact solutions and existing methods of similar type show that the new extension of the BBDFs improved the stability with acceptable degree of accuracy.


Author(s):  
S.E. Kasenov ◽  
◽  
G.E. Kasenova ◽  
A.A. Sultangazin ◽  
B.D. Bakytbekova ◽  
...  

The article considers direct and inverse problems of a system of nonlinear differential equations. Such problems are often found in various fields of science, especially in medicine, chemistry and economics. One of the main methods for solving nonlinear differential equations is the numerical method. The initial direct problem is solved by the Rune-Kutta method with second accuracy and graphs of the numerical solution are shown. The inverse problem of finding the coefficients of a system of nonlinear differential equations with additional information on solving the direct problem is posed. The numerical solution of this inverse problem is reduced to minimizing the objective functional. One of the methods that is applicable to nonsmooth and noisy functionals, unconditional optimization of the functional of several variables, which does not use the gradient of the functional, is the Nelder-Mead method. The article presents the NellerMead algorithm. And also a numerical solution of the inverse problem is shown.


Author(s):  
Elena Adomaitienė ◽  
Skaidra Bumelienė ◽  
Gytis Mykolaitis ◽  
Arūnas Tamaševičius

A control method for desynchronizing an array of mean-field coupled FitzHugh–Nagumo-type oscillators is described. The technique is based on applying an adjustable DC voltage source to the coupling node. Both, numerical solution of corresponding nonlinear differential equations and hardware experiments with a nonlinear electrical circuit have been performed.


Sign in / Sign up

Export Citation Format

Share Document