Proof that there are infinitely many modalities in Lewis's system S2

1940 ◽  
Vol 5 (3) ◽  
pp. 110-112 ◽  
Author(s):  
J. C. C. McKinsey

In this note I show, by means of an infinite matrix M, that the number of irreducible modalities in Lewis's system S2 is infinite. The result is of some interest in view of the fact that Parry has recently shown that there are but a finite number of modalities in the system S2 (which is the next stronger system than S2 discussed by Lewis).I begin by introducing a function θ which is defined over the class of sets of signed integers, and which assumes sets of signed integers as values. If A is any set of signed integers, then θ(A) is the set of all signed integers whose immediate predecessors are in A; i.e., , so that n ϵ θ(A) is true if and only if n − 1 ϵ A is true.Thus, for example, θ({−10, −1, 0, 3, 14}) = {−9, 0, 1, 4, 15}. In particular we notice that θ(V) = V and θ(Λ) = Λ, where V is the set of all signed integers, and Λ is the empty set of signed integers.It is clear that, if A and B are sets of signed integers, then θ(A+B) = θ(A)+θ(B).It is also easily proved that, for any set A of signed integers we have . For, if n is any signed integer, then

Author(s):  
H. K. Farahat ◽  
L. Mirsky

Let be a free additive abelian group, and let be a basis of , so that every element of can be expressed in a unique way as a (finite) linear combination with integral coefficients of elements of . We shall be concerned with the ring of endomorphisms of , the sum and product of the endomorphisms φ, χ being defined, in the usual manner, by the equationsA permutation of a set will be called restricted if it moves only a finite number of elements. We call an endomorphism of a permutation endomorphism if it induces a restricted permutation of the basis .


1980 ◽  
Vol 12 (01) ◽  
pp. 5-7
Author(s):  
D. Gardiner

Parker's model (or the Scotch Auction) for a contest between two competitors has been studied by Rose (1978). He considers a form of the model in which every pure strategy is playable, and shows that there is no evolutionarily stable strategy (ess). In this paper, in order to discover more about the behaviour of strategies under the model, we shall assume that there are only a finite number of playable pure strategies I 1, I 2, ···, I n where I j is the strategy ‘play value m j ′ and m 1 < m 2 < ··· < m n . The payoff matrix A for the contest is then given by where V is the reward for winning the contest, C is a constant added to ensure that each entry in A is non-negative (see Bishop and Cannings (1978)), and E[I i , I j ] is the expected payoff for playing I i against I j . We also assume that A is regular (Taylor and Jonker (1978)) i.e. that all its rows are independent.


1969 ◽  
Vol 21 ◽  
pp. 1483-1488
Author(s):  
Kenneth S. Williams

If A is a set with only a finite number of elements, we write |A| for the number of elements in A. Let p be a large prime and let m be a positive integer fixed independently of p. We write [pm] for the finite field with pm elements and [pm]′ for [pm] – {0}. We consider in this paper only subsets H of [pm] for which |H| = h satisfies1.1If f(x) ∈ [pm, x] we let N(f; H) denote the number of distinct values of y in H for which at least one of the roots of f(x) = y is in [pm]. We write d(d ≥ 1) for the degree of f and suppose throughout that d is fixed and that p ≧ p0(d), for some prime p0, depending only on d, which is greater than d.


Author(s):  
John Lamperti

Some time ago, S. Bochner gave an interesting analysis of certain positive operators which are associated with the ultraspherical polynomials (1,2). Let {Pn(x)} denote these polynomials, which are orthogonal on [ − 1, 1 ] with respect to the measureand which are normalized by settigng Pn(1) = 1. (The fixed parameter γ will not be explicitly shown.) A sequence t = {tn} of real numbers is said to be ‘positive definite’, which we will indicate by writing , provided thatHere the coefficients an are real, and the prime on the summation sign means that only a finite number of terms are different from 0. This condition can be rephrased by considering the set of linear operators on the space of real polynomials which have diagonal matrices with respect to the basis {Pn(x)}, and noting that


1957 ◽  
Vol 22 (4) ◽  
pp. 343-344
Author(s):  
Frederic B. Fitch

Greater economy can be effected in the primitive rules for the system K of basic logic by defining the existence operator ‘E’ in terms of two-place abstraction and the disjunction operator ‘V’. This amounts to defining ‘E’ in terms of ‘ε’, ‘έ’, ‘o, ‘ό’, ‘W’ and ‘V’, since the first five of these six operators are used for defining two-place abstraction.We assume that the class Y of atomic U-expressions has only a single member ‘σ’. Similar methods can be used if Y had some other finite number of members, or even an infinite number of members provided that they are ordered into a sequence by a recursive relation represented in K. In order to define ‘E’ we begin by defining an operator ‘D’ such thatHere ‘a’ may be thought of as an existence operator that provides existence quantification over some finite class of entities denoted by a class A of U-expressions. In other words, suppose that ‘a’ is such that ‘ab’ is in K if and only if, for some ‘e’ in A, ‘be’ is in K. Then ‘Dab’ is in K if and only if, for some ‘e and ‘f’ in A, ‘be’ or ‘b(ef)’ is in K; and ‘a’, ‘Da’, ‘D(Da)’, and so on, can be regarded as existence operators that provide for existence quantification over successively wider and wider finite classes. In particular, if ‘a’ is ‘εσ’, then A would be the class Y having ‘σ’ as its only member, and we can define the unrestricted existence operator ‘E’ in such a way that ‘Eb’ is in K if and only if some one of ‘εσb’, ‘D(εσ)b’, ‘D(D(εσ))b’, and so on, is in K.


1968 ◽  
Vol 11 (4) ◽  
pp. 527-531 ◽  
Author(s):  
Richard K. Guy ◽  
Patrick A. Kelly

Let Sn be the set of n2 points with integer coordinates n (x, y), 1 ≤ x, y <n. Let fn be the maximum cardinal of a subset T of Sn such that no three points of T are collinear. Clearly fn < 2n.For 2 ≤ n ≤ 10 it is known ([2], [3] for n = 8, [ 1] for n = 10, also [4], [6]) that fn = 2n, and that this bound is attained in 1, 1, 4, 5, 11, 22, 57, 51 and 156 distinct configurations for these nine values of n. On the other hand, P. Erdös [7] has pointed out that if n is prime, fn ≥ n, since the n points (x, x2) reduced modulo n have no three collinear. We give a probabilistic argument to support the conjecture that there is only a finite number of solutions to the no-three-in-line problem. More specifically, we conjecture that


1959 ◽  
Vol 55 (2) ◽  
pp. 177-180 ◽  
Author(s):  
R. A. Sack

1. Introduction. Ledermann(1) has treated the problem of calculating the asymptotic probabilities that a system will be found in any one of a finite number N of possible states if transitions between these states occur as Markov processes with a continuous time parameter t. If we denote by pi(t) the probability that at time t the system is in the ith state and by aij ( ≥ 0) the constant probability per unit time for transitions from the jth to the ith state, the rate of change of pi is given bywhere the sum is to be taken over all j ≠ i. This set of equations can be written in matrix form aswhere P(t) is the vector with components pi(t) and the constant matrix A has elements


1971 ◽  
Vol 70 (2) ◽  
pp. 257-262
Author(s):  
Dale W. Swann

Let K(s, t) be a complex-valued L2 kernel on the square ⋜ s, t ⋜ by which we meanand let {λν}, perhaps empty, be the set of finite characteristic values (f.c.v.) of K(s, t), i.e. complex numbers with which there are associated non-trivial L2 functions øν(s) satisfyingFor such kernels, the iterated kernels,are well-defined (1), as are the higher order tracesCarleman(2) showed that the f.c.v. of K are the zeros of the modified Fredhoim determinantthe latter expression holding only for |λ| sufficiently small (3). The δn in (3) may be calculated, at least in theory, by well-known formulae involving the higher order traces (1). For our later analysis of this case, we define and , respectively, as the minimum and maximum moduli of the zeros of , the nth section of D*(K, λ).


Author(s):  
P. A. P. Moran

We consider bounded sets in a plane. If X is such a set, we denote by Pθ(X) the projection of X on the line y = x tan θ, where x and y belong to some fixed coordinate system. By f(θ, X) we denote the measure of Pθ(X), taking this, in general, as an outer Lebesgue measure. The least upper bound of f (θ, X) for all θ we denote by M. We write sm X for the outer two-dimensional Lebesgue measure of X. Then G. Szekeres(1) has proved that if X consists of a finite number of continua,Béla v. Sz. Nagy(2) has obtained a stronger inequality, and it is the purpose of this paper to show that these results hold for more general classes of sets.


Author(s):  
A. M. Duguid ◽  
D. H. McLain

Let an element of a group be called an FC element if it has only a finite number of conjugates in the group. Baer(1) and Neumann (8) have discussed groups in which every element is FC, and called them FC-groups. Both Abelian and finite groups are trivially FC-groups; Neumann has studied the properties common to FC-groups and Abelian groups, and Baer the properties common to FC-groups and finite groups. Baer has also shown that, for an arbitrary group G, the set H1 of all FC elements is a characteristic subgroup. Haimo (3) has defined the FC-chain of a group G byHi/Hi−1 is the subgroup of all FC elements in G/Hi−1.


Sign in / Sign up

Export Citation Format

Share Document