The contributions of Alfred Tarski to algebraic logic

1986 ◽  
Vol 51 (4) ◽  
pp. 899-906 ◽  
Author(s):  
J. Donald Monk

One of the most extensive parts of Tarski's contributions to logic is his work on the algebraization of the subject. His work here involves Boolean algebras, relation algebras, cylindric algebras, Boolean algebras with operators, Brouwerian algebras, and closure algebras. The last two are less developed in his work, although his contributions are basic to other work in those subjects. At any rate, not being conversant with the latest developments in those fields, we shall concentrate on an exposition of Tarski's work in the first four areas, trying to put them in the perspective of present-day developments.For useful comments, criticisms, and suggestions, the author is indebted to Steven Givant, Leon Henkin, Wilfrid Hodges, Bjarni Jónsson, Roger Lyndon, and Robert Vaught.

2005 ◽  
Vol 11 (4) ◽  
pp. 465-516 ◽  
Author(s):  
Tarek Sayed Ahmed

AbstractThis is a survey article on algebraic logic. It gives a historical background leading up to a modern perspective. Central problems in algebraic logic (like the representation problem) are discussed in connection to other branches of logic, like modal logic, proof theory, model-theoretic forcing, finite combinatorics, and Gödel's incompleteness results. We focus on cylindric algebras. Relation algebras and polyadic algebras are mostly covered only insofar as they relate to cylindric algebras, and even there we have not told the whole story. We relate the algebraic notion of neat embeddings (a notion special to cylindric algebras) to the metalogical ones of provability, interpolation and omitting types in variants of first logic. Another novelty that occurs here is relating the algebraic notion of atom-canonicity for a class of boolean algebras with operators to the metalogical one of omitting types for the corresponding logic. A hitherto unpublished application of algebraic logic to omitting types of first order logic is given. Proofs are included when they serve to illustrate certain concepts. Several open problems are posed. We have tried as much as possible to avoid exploring territory already explored in the survey articles of Monk [93] and Németi [97] in the subject.


2001 ◽  
Vol 66 (1) ◽  
pp. 207-224 ◽  
Author(s):  
Vera Stebletsova ◽  
Yde Venema

AbstractWith each projective geometry we can associate a Lyndon algebra. Such an algebra always satisfies Tarski's axioms for relation algebras and Lyndon algebras thus form an interesting connection between the fields of projective geometry and algebraic logic. In this paper we prove that if G is a class of projective geometries which contains an infinite projective geometry of dimension at least three, then the class L(G) of Lyndon algebras associated with projective geometries in G has an undecidable equational theory. In our proof we develop and use a connection between projective geometries and diagonal-free cylindric algebras.


2002 ◽  
Vol 67 (1) ◽  
pp. 197-213 ◽  
Author(s):  
Robin Hirsch ◽  
Ian Hodkinson ◽  
Roger D. Maddux

AbstractWe confirm a conjecture, about neat embeddings of cylindric algebras, made in 1969 by J. D. Monk, and a later conjecture by Maddux about relation algebras obtained from cylindric algebras. These results in algebraic logic have the following consequence for predicate logic: for every finite cardinal α ≥ 3 there is a logically valid sentence X, in a first-order language ℒ with equality and exactly one nonlogical binary relation symbol E, such that X contains only 3 variables (each of which may occur arbitrarily many times), X has a proof containing exactly α + 1 variables, but X has no proof containing only α variables. This solves a problem posed by Tarski and Givant in 1987.


1998 ◽  
Vol 63 (2) ◽  
pp. 479-484 ◽  
Author(s):  
Maarten Marx

We investigate amalgamation properties of relational type algebras. Besides purely algebraic interest, amalgamation in a class of algebras is important because it leads to interpolation results for the logic corresponding to that class (cf. [15]). The multi-modal logic corresponding to relational type algebras became known under the name of “arrow logic” (cf. [18, 17]), and has been studied rather extensively lately (cf. [10]). Our research was inspired by the following result of Andréka et al. [1].Let K be a class of relational type algebras such that(i) composition is associative,(ii) K is a class of boolean algebras with operators, and(iii) K contains the representable relation algebras RRA.Then the equational theory of K is undecidable.On the other hand, there are several classes of relational type algebras (e.g., NA, WA denned below) whose equational (even universal) theories are decidable (cf. [13]). Composition is not associative in these classes. Theorem 5 indicates that also with respect to amalgamation (a very weak form of) associativity forms a borderline. We first recall the relevant definitions.


1972 ◽  
Vol 37 (4) ◽  
pp. 646-656 ◽  
Author(s):  
Daniel B. Demaree

It is well known that the laws of logic governing the sentence connectives—“and”, “or”, “not”, etc.—can be expressed by means of equations in the theory of Boolean algebras. The task of providing a similar algebraic setting for the full first-order predicate logic is the primary concern of algebraic logicians. The best-known efforts in this direction are the polyadic algebras of Halmos (cf. [2]) and the cylindric algebras of Tarski (cf. [3]), both of which may be described as Boolean algebras with infinitely many additional operations. In particular, there is a primitive operator, cκ, corresponding to each quantification, ∃υκ. In this paper we explore a version of algebraic logic conceived by A. H. Copeland, Sr., and described in [1], which has this advantage: All operators are generated from a finite set of primitive operations.Following the theory of cylindric algebras, we introduce, in the natural way, the classes of Copeland set algebras (SCpA), representable Copeland algebras (RCpA), and Copeland algebras of formulas. Playing a central role in the discussion is the set, Γ, of all equations holding in every set algebra. The reason for this is that the operations in a set algebra reflect the notion of satisfaction of a formula in a model, and hence an equation expresses the fact that two formulas are satisfied by the same sequences of objects in the model. Thus to say that an equation holds in every set algebra is to assert that a certain pair of formulas are logically equivalent.


1997 ◽  
Vol 62 (1) ◽  
pp. 225-279 ◽  
Author(s):  
Robin Hirsch ◽  
Ian Hodkinson

AbstractWe consider the problem of finding and classifying representations in algebraic logic. This is approached by letting two players build a representation using a game. Homogeneous and universal representations are characterized according to the outcome of certain games. The Lyndon conditions defining representable relation algebras (for the finite case) and a similar schema for cylindric algebras are derived. Finte relation algebras with homogeneous representations are characterized by first order formulas. Equivalence games are defined, and are used to establish whether an algebra is ω-categorical. We have a simple proof that the perfect extension of a representable relation algebra is completely representable.An important open problem from algebraic logic is addressed by devising another two-player game, and using it to derive equational axiomatisations for the classes of all representable relation algebras and representable cylindric algebras.Other instances of this approach are looked at, and include the step by step method.


Author(s):  
Tarek Sayed Ahmed

Fix a finite ordinal \(n\geq 3\) and let \(\alpha\) be an arbitrary ordinal. Let \(\mathsf{CA}_n\) denote the class of cylindric algebras of dimension \(n\) and \(\sf RA\) denote the class of relation algebras. Let \(\mathbf{PA}_{\alpha}(\mathsf{PEA}_{\alpha})\) stand for the class of polyadic (equality) algebras of dimension \(\alpha\). We reprove that the class \(\mathsf{CRCA}_n\) of completely representable \(\mathsf{CA}_n$s, and the class \(\sf CRRA\) of completely representable \(\mathsf{RA}\)s are not elementary, a result of Hirsch and Hodkinson. We extend this result to any variety \(\sf V\) between polyadic algebras of dimension \(n\) and diagonal free \(\mathsf{CA}_n\)s. We show that that the class of completely and strongly representable algebras in \(\sf V\) is not elementary either, reproving a result of Bulian and Hodkinson. For relation algebras, we can and will, go further. We show the class \(\sf CRRA\) is not closed under \(\equiv_{\infty,\omega}\). In contrast, we show that given \(\alpha\geq \omega\), and an atomic \(\mathfrak{A}\in \mathsf{PEA}_{\alpha}\), then for any \(n<\omega\), \(\mathfrak{Nr}_n\A\) is a completely representable \(\mathsf{PEA}_n\). We show that for any \(\alpha\geq \omega\), the class of completely representable algebras in certain reducts of \(\mathsf{PA}_{\alpha}\)s, that happen to be varieties, is elementary. We show that for \(\alpha\geq \omega\), the the class of polyadic-cylindric algebras dimension \(\alpha\), introduced by Ferenczi, the completely representable algebras (slightly altering representing algebras) coincide with the atomic ones. In the last algebras cylindrifications commute only one way, in a sense weaker than full fledged commutativity of cylindrifications enjoyed by classical cylindric and polyadic algebras. Finally, we address closure under Dedekind-MacNeille completions for cylindric-like algebras of dimension \(n\) and \(\mathsf{PA}_{\alpha}\)s for \(\alpha\) an infinite ordinal, proving negative results for the first and positive ones for the second.


1997 ◽  
Vol 62 (3) ◽  
pp. 816-847 ◽  
Author(s):  
Robin Hirsch ◽  
Ian Hodkinson

AbstractA boolean algebra is shown to be completely representable if and only if it is atomic, whereas it is shown that neither the class of completely representable relation algebras nor the class of completely representable cylindric algebras of any fixed dimension (at least 3) are elementary.


Sign in / Sign up

Export Citation Format

Share Document