On the two-boundary first-crossing-time problem for diffusion processes

1990 ◽  
Vol 27 (1) ◽  
pp. 102-114 ◽  
Author(s):  
A. Buonocore ◽  
V. Giorno ◽  
A. G. Nobile ◽  
L. M. Ricciardi

The first-crossing-time problem through two time-dependent boundaries for one-dimensional diffusion processes is considered. The first-crossing p.d.f.'s from below and from above are proved to satisfy a new system of Volterra integral equations of the second kind involving two arbitrary continuous functions. By a suitable choice of such functions a system of continuous-kernel integral equations is obtained and an efficient algorithm for its solution is provided. Finally, conditions on the drift and infinitesimal variance of the diffusion process are given such that the system of integral equations reduces to a non-singular single integral equation for the first-crossing-time p.d.f.

1990 ◽  
Vol 27 (01) ◽  
pp. 102-114 ◽  
Author(s):  
A. Buonocore ◽  
V. Giorno ◽  
A. G. Nobile ◽  
L. M. Ricciardi

The first-crossing-time problem through two time-dependent boundaries for one-dimensional diffusion processes is considered. The first-crossing p.d.f.'s from below and from above are proved to satisfy a new system of Volterra integral equations of the second kind involving two arbitrary continuous functions. By a suitable choice of such functions a system of continuous-kernel integral equations is obtained and an efficient algorithm for its solution is provided. Finally, conditions on the drift and infinitesimal variance of the diffusion process are given such that the system of integral equations reduces to a non-singular single integral equation for the first-crossing-time p.d.f.


1995 ◽  
Vol 32 (2) ◽  
pp. 316-336 ◽  
Author(s):  
A. G. Di Crescenzo ◽  
V. Giorno ◽  
A. G. Nobile ◽  
L. M. Ricciardi

The method earlier introduced for one-dimensional diffusion processes [6] is extended to obtain closed form expressions for the transition p.d.f.'s of two-dimensional diffusion processes in the presence of absorbing boundaries and for the first-crossing time p.d.f.'s through such boundaries. Use of such a method is finally made to analyse a two-dimensional linear process.


1995 ◽  
Vol 32 (02) ◽  
pp. 316-336 ◽  
Author(s):  
A. G. Di Crescenzo ◽  
V. Giorno ◽  
A. G. Nobile ◽  
L. M. Ricciardi

The method earlier introduced for one-dimensional diffusion processes [6] is extended to obtain closed form expressions for the transition p.d.f.'s of two-dimensional diffusion processes in the presence of absorbing boundaries and for the first-crossing time p.d.f.'s through such boundaries. Use of such a method is finally made to analyse a two-dimensional linear process.


1997 ◽  
Vol 34 (3) ◽  
pp. 623-631 ◽  
Author(s):  
R. Gutiérrez ◽  
L. M. Ricciardi ◽  
P. Román ◽  
F. Torres

In this paper we study a Volterra integral equation of the second kind, including two arbitrary continuous functions, in order to determine first-passage-time probability density functions through time-dependent boundaries for time-non-homogeneous one-dimensional diffusion processes with natural boundaries. These results generalize those which were obtained for time-homogeneous diffusion processes by Giorno et al. [3], and for some particular classes of time-non-homogeneous diffusion processes by Gutiérrez et al. [4], [5].


2014 ◽  
Vol 46 (01) ◽  
pp. 186-202 ◽  
Author(s):  
Laura Sacerdote ◽  
Ottavia Telve ◽  
Cristina Zucca

Consider a one-dimensional diffusion process on the diffusion interval I originated in x 0 ∈ I. Let a(t) and b(t) be two continuous functions of t, t > t 0, with bounded derivatives, a(t) < b(t), and a(t), b(t) ∈ I, for all t > t 0. We study the joint distribution of the two random variables T a and T b , the first hitting times of the diffusion process through the two boundaries a(t) and b(t), respectively. We express the joint distribution of T a and T b in terms of ℙ(T a < t, T a < T b ) and ℙ(T b < t, T a > T b ), and we determine a system of integral equations verified by these last probabilities. We propose a numerical algorithm to solve this system and we prove its convergence properties. Examples and modeling motivation for this study are also discussed.


1997 ◽  
Vol 34 (03) ◽  
pp. 623-631 ◽  
Author(s):  
R. Gutiérrez ◽  
L. M. Ricciardi ◽  
P. Román ◽  
F. Torres

In this paper we study a Volterra integral equation of the second kind, including two arbitrary continuous functions, in order to determine first-passage-time probability density functions through time-dependent boundaries for time-non-homogeneous one-dimensional diffusion processes with natural boundaries. These results generalize those which were obtained for time-homogeneous diffusion processes by Giorno et al. [3], and for some particular classes of time-non-homogeneous diffusion processes by Gutiérrez et al. [4], [5].


2014 ◽  
Vol 46 (1) ◽  
pp. 186-202 ◽  
Author(s):  
Laura Sacerdote ◽  
Ottavia Telve ◽  
Cristina Zucca

Consider a one-dimensional diffusion process on the diffusion interval I originated in x0 ∈ I. Let a(t) and b(t) be two continuous functions of t, t > t0, with bounded derivatives, a(t) < b(t), and a(t), b(t) ∈ I, for all t > t0. We study the joint distribution of the two random variables Ta and Tb, the first hitting times of the diffusion process through the two boundaries a(t) and b(t), respectively. We express the joint distribution of Ta and Tb in terms of ℙ(Ta < t, Ta < Tb) and ℙ(Tb < t, Ta > Tb), and we determine a system of integral equations verified by these last probabilities. We propose a numerical algorithm to solve this system and we prove its convergence properties. Examples and modeling motivation for this study are also discussed.


2014 ◽  
Vol 13 (04) ◽  
pp. 1430001 ◽  
Author(s):  
Jaume Masoliver

We review the level-crossing problem which includes the first-passage and escape problems as well as the theory of extreme values (the maximum, the minimum, the maximum absolute value and the range or span). We set the definitions and general results and apply them to one-dimensional diffusion processes with explicit results for the Brownian motion and the Ornstein–Uhlenbeck (OU) process.


Sign in / Sign up

Export Citation Format

Share Document