Logarithmic asymptotics for steady-state tail probabilities in a single-server queue

1994 ◽  
Vol 31 (A) ◽  
pp. 131-156 ◽  
Author(s):  
Peter W. Glynn ◽  
Ward Whitt

We consider the standard single-server queue with unlimited waiting space and the first-in first-out service discipline, but without any explicit independence conditions on the interarrival and service times. We find conditions for the steady-state waiting-time distribution to have asymptotics of the form x–1 log P(W> x) → –θ ∗as x → ∞for θ ∗ > 0. We require only stationarity of the basic sequence of service times minus interarrival times and a Gärtner–Ellis condition for the cumulant generating function of the associated partial sums, i.e. n–1 log E exp (θSn) → ψ (θ) as n → ∞, plus regularity conditions on the decay rate function ψ. The asymptotic decay rate θ is the root of the equation ψ (θ) = 0. This result in turn implies a corresponding asymptotic result for the steady-state workload in a queue with general non-decreasing input. This asymptotic result covers the case of multiple independent sources, so that it provides additional theoretical support for a concept of effective bandwidths for admission control in multiclass queues based on asymptotic decay rates.

1994 ◽  
Vol 31 (A) ◽  
pp. 131-156 ◽  
Author(s):  
Peter W. Glynn ◽  
Ward Whitt

We consider the standard single-server queue with unlimited waiting space and the first-in first-out service discipline, but without any explicit independence conditions on the interarrival and service times. We find conditions for the steady-state waiting-time distribution to have asymptotics of the form x –1 log P(W > x) → –θ ∗as x → ∞for θ ∗ > 0. We require only stationarity of the basic sequence of service times minus interarrival times and a Gärtner–Ellis condition for the cumulant generating function of the associated partial sums, i.e. n –1 log E exp (θSn ) → ψ (θ) as n → ∞, plus regularity conditions on the decay rate function ψ. The asymptotic decay rate θ is the root of the equation ψ (θ) = 0. This result in turn implies a corresponding asymptotic result for the steady-state workload in a queue with general non-decreasing input. This asymptotic result covers the case of multiple independent sources, so that it provides additional theoretical support for a concept of effective bandwidths for admission control in multiclass queues based on asymptotic decay rates.


2017 ◽  
Vol 54 (3) ◽  
pp. 921-942
Author(s):  
Gianmarco Bet ◽  
Remco van der Hofstad ◽  
Johan S. H. van Leeuwaarden

AbstractWe consider the Δ(i)/G/1 queue, in which a total ofncustomers join a single-server queue for service. Customers join the queue independently after exponential times. We considerheavy-tailedservice-time distributions with tails decaying asx-α, α ∈ (1, 2). We consider the asymptotic regime in which the population size grows to ∞ and establish that the scaled queue-length process converges to an α-stable process with a negative quadratic drift. We leverage this asymptotic result to characterize the head start that is needed to create a long period of uninterrupted activity (a busy period). The heavy-tailed service times should be contrasted with the case of light-tailed service times, for which a similar scaling limit arises (Betet al.(2015)), but then with a Brownian motion instead of an α-stable process.


2013 ◽  
Vol 756-759 ◽  
pp. 2470-2474
Author(s):  
Mian Zhang

We consider a finite butter single server queue with batch arrival, where server serves a limited number of customer before going for vacation (s).The inter arrival times of batches are assumed to be independent and geometrically distribute. The service times and the vacation times of the server are generally distributed and their durations are integral multiples of slots duration. We obtain queue length distributions at service completion, vacation termination and arbitrary epochs.


Author(s):  
Kailash C. Madan

We study the steady state behavior of a batch arrival single server queue in which the first service consisting of two stages with general service times G1 and G2 is compulsory. After completion of the two stages of the first essential service, a customer has the option of choosing one of the two types of additional service with respective general service times G1 and G2 . Just after completing both stages of first essential service with or without one of the two types of additional optional service, the server has the choice of taking an optional deterministic vacation of fixed (constant) length of time. We obtain steady state probability generating functions for the queue size for various states of the system at a random epoch of time in explicit and closed forms. The steady state results of some interesting special cases have been derived from the main results.


1987 ◽  
Vol 24 (03) ◽  
pp. 758-767
Author(s):  
D. Fakinos

This paper studies theGI/G/1 queueing system assuming that customers have service times depending on the queue size and also that they are served in accordance with the preemptive-resume last-come–first-served queue discipline. Expressions are given for the limiting distribution of the queue size and the remaining durations of the corresponding services, when the system is considered at arrival epochs, at departure epochs and continuously in time. Also these results are applied to some particular cases of the above queueing system.


2006 ◽  
Vol 54 (1) ◽  
pp. 79-79
Author(s):  
I. J. B. F. Adan ◽  
V. G. Kulkarni

Sign in / Sign up

Export Citation Format

Share Document