scholarly journals Effect of C and Al Elements on High Resistivity and High Rigidity of Ultra-High Strength TiC(1−X)/Ti-Metal Matrix Composites Fabricated by Blended Elemental Reactive Sintering

2019 ◽  
Vol 83 (3) ◽  
pp. 97-106
Author(s):  
Tadahiko Furuta ◽  
Katsuomi Shiina ◽  
Yoshihisa Ueda ◽  
Shinobu Shimazaki ◽  
Kiyoji Nakamura
Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1034
Author(s):  
Massoud Malaki ◽  
Alireza Fadaei Tehrani ◽  
Behzad Niroumand ◽  
Manoj Gupta

Metal matrix composites (MMCs) have been developed in response to the enormous demand for special industrial materials and structures for automotive and aerospace applications, wherein both high-strength and light weight are simultaneously required. The most common, inexpensive route to fabricate MMCs or metal matrix nanocomposites (MMNCs) is based on casting, wherein reinforcements like nanoceramics, -carbides, -nitrides, elements or carbon allotropes are added to molten metal matrices; however, most of the mentioned reinforcements, especially those with nanosized reinforcing particles, have usually poor wettability with serious drawbacks like particle agglomerations and therefore diminished mechanical strength is almost always expected. Many research efforts have been made to enhance the affinity between the mating surfaces. The aim in this paper is to critically review and comprehensively discuss those approaches/routes commonly employed to boost wetting conditions at reinforcement-matrix interfaces. Particular attention is paid to aluminum matrix composites owing to the interest in lightweight materials and the need to enhance the mechanical properties like strength, wear, or creep resistance. It is believed that effective treatment(s) may enormously affect the wetting and interfacial strength.


2021 ◽  
Vol 30 ◽  
pp. 2633366X2092971
Author(s):  
Ying Ba ◽  
Shu Sun

Fiber-reinforced metal matrix composites have mechanical properties highly dependent on directions, possessing high strength and fatigue resistance in fiber longitudinal direction achieved by weak interface bonding. However, the disadvantage of weak interface combination is the reduction of transversal performances. In this article, tensile and fatigue properties of carbon fiber-reinforced 5056 aluminum alloy matrix (Cf/5056Al) composite under the condition of medium-strength interface combination are carried out. The fatigue damage mechanisms of Cf/5056Al composite under tension–tension and tension–compression loads are not the same, but the fatigue life curves are close, which may be the result of the medium-strength interface combination.


2020 ◽  
Vol 321 ◽  
pp. 11028
Author(s):  
S.V. Prikhodko ◽  
O.M. Ivasishin ◽  
P.E. Markovsky ◽  
D.G. Savvakin ◽  
O.O. Stasiuk

Due to the high specific strength of Ti, materials on its base are indispensable when high-strength and low-weight requests are a chief demand from the industry. Reinforcement of Ti-alloys with hard and light particles of TiC and TiB is a credible pathway to make metal matrix composites (MMC) with enhanced elastic moduli without compromising the material’s low-weight. However, reinforcement of the alloy with hard particles inevitably lowers the value of toughness and plasticity of material. Yet, in many applications simultaneous high hardness and high plasticity are not required through the entire structure. For instance, parts that need enhanced wear resistance or resistance upon ballistic impact demand high hardness and strength at the surface, whereas their core necessitates rather high toughness and ductility. Such combination of mechanical properties can be achieved on layered structures joining two and more layers of different materials with different chemical composition and/or microstructure within each individual layer. Multi-layered structures of Ti-6Al-4V alloy and its metal-matrix composites (MMC) with 5 and10% (vol.) of TiC and TiB were fabricated in this study using blended elemental powder metallurgy (BEPM) of hydrogenated Ti. Post-sintering hot deformation and annealing were sometimes also employed to improve the microstructure and properties. Structure of materials were characterized using light optical microscopy, scanning electron microscopy, electron backscattered diffraction, x-ray microscopy, tensile and 3-point flexural tests. The effect of various fabrication parameters was investigated to achieve desirable microstructure and properties of layered materials. Using optimized processing parameters, relatively large multilayered plates were made via BEPM and demonstrate superior anti-ballistic performance compared to the equally sized uniform Ti-6Al-4V plates fabricated by traditional ingot and wrought technology.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2828
Author(s):  
Dae-Young Kim ◽  
Hyun-Joo Choi

Metal matrix composites (MMCs) are promising alternatives to metallic alloys. Their high strength-to-weight ratios; high temperature stabilities; and unique thermal, electrical, and chemical properties make them suitable for automotive, aerospace, defense, electrical, electronic, energy, biomedical, and other applications. The wide range of potential combinations of materials allows the properties of MMCs to be tailored by manipulating the morphology, size, orientation, and fraction of reinforcement, offering further opportunities for a variety of applications in daily life. This Special Issue, “Metal Matrix Composites”, addresses advances in the material science, processing, material modeling and characterization, performance, and testing of metal matrix composites.


In the present day engineering design and development activities many Scientists, Researchers and Engineers are striving hard to develop new and better engineering materials, which accomplishes high strength, low weight and energy efficient materials since the problems of environment and energy are major threshold areas. The development of new materials is growing day by day to replace the conventional materials in aerospace, marine engineering, automobile engineering industries etc., Hence, composite materials are found to be an alternative. A variety of metals and their alloys such as Aluminum, Magnesium and Titanium are comprehensively used as matrix materials. Among these Aluminium alloys have been used extensively, because of their excellent strength, low density, corrosion resistance and toughness. Similarly, many researchers have attempted to develop aluminum based metal matrix composites using different reinforcements such as SiC, Al2O3, B4C, TiC, TiO2, B4C etc., are added to the matrix to get required MMC’s. Among these reinforcements, B4C emerged as an exceptional reinforcement due to its high strength to density ratio, possesses high hardness and avoid the formation of interfacial reaction products with aluminum. Hence, in this paper attempts are made to fabricate Al 6061-3, 6, 9 and 12 wt.% B4C metal matrix composites by stir casting process to study fatigue life and fracture toughness as per ASTM standards. It is evident that fatigue strength and fracture toughness of the composites were enhanced with the addition of the wt.% of the reinforcement.


Author(s):  
PRABHAKAR KAMMER ◽  
DR. H.K. SHIVANAND ◽  
SANTHOSH KUMAR. S

Conventional monolithic materials have limitations in achieving good combination of strength, stiffness, toughness and density. To overcome these shortcomings and to meet the ever increasing demand of modern day technology, composites are most promising materials of recent interest. Metal matrix composites (mmcs) possess significantly improved properties including high specific strength, specific modulus, damping capacity and good wear resistance compared to unreinforced alloys. Among the mmc’s aluminum composites are predominant in use due to their low weight and high strength. The key features of mmc’s are specific strength and stiffness, excellent wear resistance, high electrical and thermal conductivity. The present investigation aims at the development of aluminium based e-glass and flyash particulate reinforced hybrid metal matrix composites. The test specimens are prepared as per astm standard size by turning and facing operations to conduct tensile and compression test.


Sign in / Sign up

Export Citation Format

Share Document