scholarly journals Phase Relations, Activities and Minor Element Distribution in Cu-Fe-S and Cu-Fe-S-As Systems Saturated with Carbon at 1473 K

2006 ◽  
Vol 47 (12) ◽  
pp. 2963-2971 ◽  
Author(s):  
Leandro Voisin ◽  
Kimio Itagaki
1970 ◽  
Vol 78 (3) ◽  
pp. 304-325 ◽  
Author(s):  
Tom Simkin ◽  
J. V. Smith

1981 ◽  
Vol 32 (1-4) ◽  
pp. 255-269 ◽  
Author(s):  
A. Bellanca ◽  
P. Di Salvo ◽  
P. Möller ◽  
R. Neri ◽  
F. Schley

2020 ◽  
Vol 105 (6) ◽  
pp. 922-931 ◽  
Author(s):  
Melanie J. Sieber ◽  
Franziska Wilke ◽  
Monika Koch-Müller

Abstract The presence of Ca-Mg-carbonates affects the melting and phase relations of peridotites and eclogites in the mantle, and (partial) melting of carbonates liberates carbon from the mantle to shallower depths. The onset and composition of incipient melting of carbonated peridotites and carbonated eclogites are influenced by the pure CaCO3-MgCO3-system making the understanding of the phase relations of Ca-Mg-carbonates fundamental in assessing carbon fluxes in the mantle. By performing high-pressure and high-temperature experiments, this study clarifies the suprasolidus phase relations of the nominally anhydrous CaCO3-MgCO3-system at 6 GPa showing that Ca-Mg-carbonates will (partially) melt for temperatures above ~1300 °C. A comparison with data from thermodynamic modeling confirms the experimental results. Furthermore, partition coefficients for Li, Na, K, Sr, Ba, Nb, Y, and rare earth elements between calcite and dolomitic melt, Ca-magnesite and dolomitic melt, and magnesite and dolomitic melt are established. Experiments were performed at 6 GPa and between 1350 to 1600 °C utilizing a rotating multi-anvil press. Rotation of the multi-anvil press is indispensable to establish equilibrium between solids and carbonate liquid. Major and trace elements were quantified with EPMA and LA-ICP-MS, respectively. The melting temperature and phase relations of Ca-Mg-carbonates depend on the Mg/Ca-ratio. For instance, Ca-rich carbonates with a molar Mg/(Mg+Ca)-ratio (XMg) of 0.2 will transform into a dolomitic melt (XMg = 0.33–0.31) and calcite crystals (XMg = 0.19–0.14) at 1350–1440 °C. Partial melting of Mg-rich carbonates (XMg = 0.85) will produce a dolomitic melt (XMg = 0.5–0.8) and Ca-bearing magnesite (XMg = 0.89–0.96) at 1400–1600 °C. Trace element distribution into calcite and magnesite seems to follow lattice constraints for divalent cations. For instance, the compatibility of calcite (XMg = 0.14–0.19) for Sr and Ba decreases as the cation radii increases. Ca-Mg-carbonates are incompatible for rare earth elements (REEs), whereby the distribution between carbonates and dolomitic melt depends on the Mg/Ca ratio and temperature. For instance, at 1600 °C, partition coefficients between magnesite (XMg = 0.96) and dolomitic melt (XMg = 0.8) vary by two orders of magnitudes from 0.001 to 0.1 for light-REEs to heavy-REEs. In contrast, partition coefficients of REEs (and Sr, Ba, Nb, and Y) between magnesite (XMg = 0.89) and dolomitic melt (XMg = 0.5) are more uniform scattering marginal between ~0.1–0.2 at 1400 °C.


2005 ◽  
Vol 69 (4) ◽  
pp. 471-489 ◽  
Author(s):  
S. H. Büttner

AbstractThe compositional zonation of both undeformed and plastically deformed tourmaline crystals from an amphibolite-facies mylonitic pegmatite from the Sierras Pampeanas (NW Argentina) has been investigated using electron microprobe analysis (EMPA). Undeformed tourmaline shows optical and compositional major and minor element growth zonation with a Ca- and Mg-rich rim zone and an Fe- rich core zone. The tourmaline population of the mylonite consists of crystals which appear undeformed at microscopic scale, and of weakly, moderately, and strongly deformed crystals. Depending on the intensity of plastic deformation, the optical zonation is blurred or absent, and the compositional zonation is less pronounced or destroyed. Plastic deformation mobilizes small cations (Fe2+, Mg2+) more efficiently and at lower deformation intensity than larger cations (Na+, Ca2+). In addition to intra-crystal homogenization, plastic deformation caused variable but generally minor Fe, Mg, Si, Al, Ca, and Na exchange between deformed tourmaline domains and co-existing fluid or solid phases. Dislocation creep is interpreted as the dominant deformation mechanism leading to the homogenization of the initial tourmaline growth zonation. The composition and the degree of homogeneity of deformed tourmaline domains depend on the initial composition of the growth zones, their initial volume ratio, the intensity and homogeneity of plastic deformation, and the size of the mobilized cation. Consequently, the composition of and the element distribution within plastically deformed crystals is not entirely controlled by intensive variables (P-T-X), and therefore not suitable for petrogenetic interpretation.


Sign in / Sign up

Export Citation Format

Share Document