scholarly journals Phase Transformations in Ferromagnetic NiMnGa Shape Memory Films

2000 ◽  
Vol 41 (8) ◽  
pp. 933-937 ◽  
Author(s):  
Manfred Wuttig ◽  
Corneliu Craciunescu ◽  
Jian Li
2005 ◽  
Vol 20 (6) ◽  
pp. 1606-1612 ◽  
Author(s):  
D. Wan ◽  
K. Komvopoulos

The effect of the film thickness on the phase transformations encountered in sputtered titanium-nickel (TiNi) shape-memory films due to thermal cycling in the temperature range of −150 to 150 °C was examined in the context of electrical resistivity (ER) measurements. A hysteresis in the ER response was observed for film thickness greater than 300 nm. This phenomenon is characteristic of shape-memory materials and is attributed to the rhombohedral (R) phase produced during cooling from the high-temperature cubic austenite phase to the low-temperature monoclinic martensite phase. The decrease of the TiNi film thickness below 300 nm resulted in a smaller ER hysteresis, leading eventually to its disappearance for film thickness less than ∼50 nm. The results indicate that spatial constraints introduced by the film surface and film/substrate interface generate a resistance force, which prevents lattice distortion and twinning. The inhibition of these mechanisms, which control self-accommodation R-phase transformation, leads to the suppression and eventual disappearance of the shape memory effect for film thickness less than ∼100 nm.


Author(s):  
MingJun Huang ◽  
Cheng Zhou ◽  
Yi Ling ◽  
GuoChen Zhao ◽  
LiangChang Dong ◽  
...  

2001 ◽  
Vol 42 (11) ◽  
pp. 2472-2475 ◽  
Author(s):  
Katsunari Oikawa ◽  
Takuya Ota ◽  
Fumihiko Gejima ◽  
Toshihiro Ohmori ◽  
Ryosuke Kainuma ◽  
...  

1991 ◽  
Vol 246 ◽  
Author(s):  
J.A. Horton ◽  
E.P. George ◽  
C.J. Sparks ◽  
M.Y. Kao ◽  
O.B. Cavin ◽  
...  

AbstractA survey by differential scanning calorimetry (DSC) and recovery during heating of indentations on a series of nickel-aluminum alloys showed that the Ni-36 at.% Al composition has the best potential for a recoverable shape memory effect at temperatures above 100°C. The phase transformations were studied by high temperature transmission electron microscopy (TEM) and by high temperature x-ray diffraction (HTXRD). Quenching from 1200°C resulted in a single phase, fully martensitic structure. The initial quenched-in martensites were found by both TEM and X-ray diffraction to consist of primarily a body centered tetragonal (bct) phase with some body centered orthorhombic (bco) phase present. On the first heating cycle, DSC showed an endothermic peak at 121°C and an exothermic peak at 289°C, and upon cooling a martensite exothermic peak at 115° C. Upon subsequent cycles the 289°C peak disappeared. High temperature X-ray diffraction, with a heating rate of 2°C/min, showed the expected transformation of bct phase to B2 between 100 and 200°C, however the bco phase remained intact. At 400 to 450°C the B2 phase transformed to Ni2Al and Ni5Al3. During TEM heating experiments a dislocation-free martensite transformed reversibly to B2 at temperatures less than 150°C. At higher temperatures (nearly 600°C) 1/3, 1/3, 1/3 reflections from an ω-like phase formed. Upon cooling, the 1/3, 1/3, 1/3 reflections disappeared and a more complicated martensite resulted. Boron additions suppressed intergranular fracture and, as expected, resulted in no ductility improvements. Boron additions and/or hot extrusion encouraged the formation of a superordered bct structure with 1/2, 1/2, 0 reflections.


Author(s):  
Vassilis P. Panoskaltsis ◽  
Lazaros C. Polymenakos ◽  
Dimitris Soldatos

In this work we derive a new version of generalized plasticity, suitable to describe phase transformations. In particular, we present a general multi surface formulation of the theory which is capable of describing the multiple and interacting loading mechanisms, which occur during phase transformations. The formulation relies crucially on the consideration of the intrinsic material (“physical”) metric as a primary internal variable and does not invoke any decomposition of the kinematical quantities into elastic and inelastic (transformation induced) parts. The new theory, besides its theoretical interest, is also important for application purposes such as the description and the prediction of the response of shape memory alloy materials. This is shown in the simplest possible setting by the introduction of a material model. The ability of the model in simulating several patterns of the experimentally observed behavior of these materials such as the pseudoelastic phenomenon and the shape memory effect is assessed by representative numerical examples.


Sign in / Sign up

Export Citation Format

Share Document