Activation of PI3K/Akt signaling and hormone resistance in breast cancer

Breast Cancer ◽  
2006 ◽  
Vol 13 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Eriko Tokunaga ◽  
Yasue Kimura ◽  
Kojiro Mashino ◽  
Eiji Oki ◽  
Akemi Kataoka ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Samuel J. Rodgers ◽  
Lisa M. Ooms ◽  
Viola M. J. Oorschot ◽  
Ralf B. Schittenhelm ◽  
Elizabeth V. Nguyen ◽  
...  

AbstractINPP4B suppresses PI3K/AKT signaling by converting PI(3,4)P2 to PI(3)P and INPP4B inactivation is common in triple-negative breast cancer. Paradoxically, INPP4B is also a reported oncogene in other cancers. How these opposing INPP4B roles relate to PI3K regulation is unclear. We report PIK3CA-mutant ER+ breast cancers exhibit increased INPP4B mRNA and protein expression and INPP4B increased the proliferation and tumor growth of PIK3CA-mutant ER+ breast cancer cells, despite suppression of AKT signaling. We used integrated proteomics, transcriptomics and imaging to demonstrate INPP4B localized to late endosomes via interaction with Rab7, which increased endosomal PI3Kα-dependent PI(3,4)P2 to PI(3)P conversion, late endosome/lysosome number and cargo trafficking, resulting in enhanced GSK3β lysosomal degradation and activation of Wnt/β-catenin signaling. Mechanistically, Wnt inhibition or depletion of the PI(3)P-effector, Hrs, reduced INPP4B-mediated cell proliferation and tumor growth. Therefore, INPP4B facilitates PI3Kα crosstalk with Wnt signaling in ER+ breast cancer via PI(3,4)P2 to PI(3)P conversion on late endosomes, suggesting these tumors may be targeted with combined PI3K and Wnt/β-catenin therapies.


2010 ◽  
Vol 29 (4) ◽  
pp. 751-759 ◽  
Author(s):  
Carlos A. Castaneda ◽  
Hernán Cortes-Funes ◽  
Henry L. Gomez ◽  
Eva M. Ciruelos

2017 ◽  
Vol 13 (6) ◽  
pp. 4685-4690 ◽  
Author(s):  
Yazhuo Liu ◽  
Ruoyu Wang ◽  
Lichuan Zhang ◽  
Jianhua Li ◽  
Keli Lou ◽  
...  

2014 ◽  
Vol 60 (3) ◽  
pp. 322-331 ◽  
Author(s):  
E.A. Avilova ◽  
O.E. Andreeva ◽  
V.A. Shatskaya ◽  
M.A. Krasilnikov

The main goal of this work was to study the intracellular signaling pathways responsible for the development of hormone resistance and maintaining the autonomous growth of breast cancer cells. In particular, the role of PAK1 (p21-activated kinase 1), the key mitogenic signaling protein, in the development of cell resistance to estrogens was analyzed. In vitro studies were performed on cultured breast cancer cell lines: estrogen-dependent estrogen receptor (ER)-positive MCF-7 cells and estrogen-resistant ER-negative HBL-100 cells. We found that the resistant HBL-100 cells were characterized by a higher level of PAK1 and demonstrated PAK1 involvement in the maintaining of estrogen-independent cell growth. We have also shown PAK1 ability to up-regulate Snail1, one of the epithelial-mesenchymal transition proteins, and obtained experimental evidence for Snail1 importance in the regulation of cell proliferation. In general, the results obtained in this study demonstrate involvement of PAK1 and Snail1 in the formation of estrogen-independent phenotype of breast cancer cells showing the potential role of both proteins as markers of hormone resistance of breast tumors.


Sign in / Sign up

Export Citation Format

Share Document