scholarly journals Intraoperative Monitoring of Blood Flow Insufficiency in Perforating Arteries Using Fluorescein Cerebral Angiography and Microvascular Doppler Ultrasonography During Aneurysm Surgery

2008 ◽  
Vol 36 (6) ◽  
pp. 427-433 ◽  
Author(s):  
Kyouichi SUZUKI ◽  
Youichi WATANABE ◽  
Tsuyoshi ICHIKAWA ◽  
Hitoshi ANDO ◽  
Jun SAKUMA ◽  
...  
2007 ◽  
Vol 107 (1) ◽  
pp. 60-67 ◽  
Author(s):  
Tatsuya Sasaki ◽  
Namio Kodama ◽  
Masato Matsumoto ◽  
Kyouichi Suzuki ◽  
Yutaka Konno ◽  
...  

Object The object of this study was to investigate patients with cerebral infarction in the area of the perforating arteries after aneurysm surgery. Methods The authors studied the incidence of cerebral infarction in 1043 patients using computed tomography or magnetic resonance imaging and the affected perforating arteries, clinical symptoms, prognosis, and operative maneuvers resulting in blood flow disturbance. Results Among 46 patients (4.4%) with infarction, the affected perforating arteries were the anterior choroidal artery (AChA) in nine patients, lenticulostriate artery (LSA) in nine patients, hypothalamic artery in two patients, posterior thalamoperforating artery in five patients, perforating artery of the vertebral artery (VA) in three patients, anterior thalamoperforating artery in nine patients, and recurrent artery of Heubner in nine patients. Sequelae persisted in 21 (45.7%) of the 46 patients; 13 (28.3%) had transient symptoms and 12 (26.1%) were asymptomatic. Sequelae developed in all patients with infarctions in perforating arteries in the area of the AChA, hypothalamic artery, or perforating artery of the VA; in four of five patients with posterior thalamoperforating artery involvement; and in two of nine with LSA involvement. The symptoms of anterior thalamoperforating artery infarction or recurrent artery of Heubner infarction were mild and/or transient. The operative maneuvers leading to blood flow disturbance in perforating arteries were aneurysmal neck clipping in 21 patients, temporary occlusion of the parent artery in nine patients, direct injury in seven patients, retraction in five patients, and trapping of the parent artery in four patients. Conclusions The patency of the perforating artery cannot be determined by intraoperative microscopic inspection. Intraoperative motor evoked potential monitoring contributed to the detection of blood flow disturbance in the territory of the AChA and LSA.


2019 ◽  
Vol 131 (5) ◽  
pp. 1413-1422 ◽  
Author(s):  
Gerrit Fischer ◽  
Jana Rediker ◽  
Joachim Oertel

OBJECTIVEThe quality of surgical treatment of intracranial aneurysms is determined by complete aneurysm occlusion while preserving blood flow in the parent, branching, and perforating arteries. For a few years, there has been a nearly noninvasive and cost-effective technique for intraoperative flow evaluation: microscope-integrated indocyanine green videoangiography (mICG-VA). This method allows for real-time information about blood flow in the aneurysm and the involved vessels, but its limitations are seen in the evaluation of structures located in the depth of the surgical field, especially through small craniotomies. To compensate for these drawbacks, an endoscope-integrated ICG-VA (eICG-VA) was developed. The objective of the present study was to assess the use of eICG-VA in comparison with mICG-VA for intraoperative blood flow evaluation.METHODSIn the period between January 2011 and January 2015, 216 patients with a total of 248 intracranial saccular aneurysms were surgically treated in the Department of Neurosurgery of Saarland University Medical Center in Homburg/Saar, Germany. During 95 surgeries in 88 patients with a total of 108 aneurysms, intraoperative evaluation was performed with both eICG-VA and mICG-VA. After clipping, evaluation of complete aneurysm occlusion and flow in the parent, branching, and perforating arteries was performed using both methods. Intraoperative applicability of each technique was compared with the other and with postoperative digital subtraction angiography as a standard evaluation technique.RESULTSEvaluation of completeness of aneurysm occlusion and of flow in the parent, branching, and perforating arteries was more successful with eICG-VA than with mICG-VA, especially for aneurysm neck assessment (88.9% vs 69.4%). For 63.9% of the aneurysms (n = 69), both methods were equivalent, but in 30.6% of the cases (n = 33), the eICG-VA provided better results for evaluating the post-clipping situation. In 4.6% of these aneurysms (n = 5), the information given by the additional endoscope considerably changed the surgical procedure. Thus, one residual aneurysm (0.9%), two neck remnants (1.9%), and two branch occlusions (1.9%) could be prevented. Nevertheless, two incomplete aneurysm occlusions (1.9%) and six neck remnants (5.6%) were revealed by postoperative digital subtraction angiography.CONCLUSIONSEndoscope-integrated ICG-VA seems to be an improvement that might increase the quality of aneurysm surgery by providing additional information. It offers higher illumination, magnification, and an extended viewing angle. Its main advantage is its ability to assess deep-seated aneurysms, especially through small craniotomies, but further studies are required.


1988 ◽  
Vol 16 (2) ◽  
pp. 191-196
Author(s):  
Seigo NAGAO ◽  
Kiyotaka UETA ◽  
Junji YOSHIOKA ◽  
Syogo MINO ◽  
Takashi FUJIWARA ◽  
...  

2007 ◽  
Vol 107 (1) ◽  
pp. 68-73 ◽  
Author(s):  
Kyouichi Suzuki ◽  
Namio Kodama ◽  
Tatsuya Sasaki ◽  
Masato Matsumoto ◽  
Tsuyoshi Ichikawa ◽  
...  

Object The authors performed fluorescein cerebral angiography in patients after aneurysm clip placement to confirm the patency of the parent artery, perforating artery, and other arteries around the aneurysm. Methods Twenty-three patients who underwent aneurysm surgery were studied. Aneurysms were located in the internal carotid artery in 12 patients, middle cerebral artery in six, anterior cerebral artery in three, basilar artery bifurcation in one, and junction of the vertebral artery (VA) and posterior inferior cerebellar artery in one. After aneurysm clip placement, the target arteries were illuminated using a beam from a blue light-emitting diode atop a 7-mm diameter pencil-type probe. In all patients, after intravenous administration of 5 ml of 10% fluorescein sodium, fluorescence in the vessels was clearly observed through a microscope and recorded on videotape. Results The excellent image quality and spatial resolution of the fluorescein angiography procedure facilitated intra-operative real-time assessment of the patency of the perforating arteries and branches near the aneurysm, including: 12 posterior communicating arteries; 12 anterior choroidal arteries; four lenticulostriate arteries; three recurrent arteries of Heubner; three hypothalamic arteries; one ophthalmic artery; one perforating artery arising from the VA; and one posterior thalamoperforating artery. All 23 patients experienced an uneventful postoperative course without clinical symptoms of perforating artery occlusion. Conclusions Because the fluorescein angiography procedure described here allows intraoperative confirmation of the patency of perforating arteries located deep inside the surgical field, it can be practically used for preventing unexpected cerebral infarction during aneurysm surgery.


2012 ◽  
Vol 117 (2) ◽  
pp. 302-308 ◽  
Author(s):  
Yoshihisa Nishiyama ◽  
Hiroyuki Kinouchi ◽  
Nobuo Senbokuya ◽  
Tatsuya Kato ◽  
Kazuya Kanemaru ◽  
...  

Recently, intraoperative fluorescence video angiography using indocyanine green (ICG) has been widely used in aneurysm surgery. This is a simple and useful method to confirm complete occlusion of the aneurysm lumen and preservation of blood flow in the arteries around the aneurysm. However, the observation field of ICG video angiography is limited under a microscope, making it difficult to confirm the flow in the arteries behind the parent arteries or aneurysm. The authors developed a new technique of intraoperative endoscopic ICG video angiography to assess the blood flow in perforating arteries hidden by the parent arteries or aneurysm. The endoscope emits excitation light with a wavelength of approximately 800 nm, and video images were obtained through a cut filter. The authors used this ICG fluorescence endoscope in treating 3 patients with unruptured cerebral aneurysms. During clip placement, the endoscope was inserted to confirm aneurysm occlusion. Then, ICG was intravenously administered, and the fluorescence in the vessels was observed via the endoscope as well as under the microscope. The blood flow in the perforating arteries was clearly identified, and no procedural complication occurred. The authors conclude that the technique is very useful and facilitates intraoperative real-time assessment of the patency of perforating arteries behind parent arteries or aneurysms.


2014 ◽  
Vol 36 (2) ◽  
pp. E7 ◽  
Author(s):  
Karl Roessler ◽  
Maximilian Krawagna ◽  
Arnd Dörfler ◽  
Michael Buchfelder ◽  
Oliver Ganslandt

Object Indocyanine green (ICG) videoangiography (VA) in cerebral aneurysm surgery allows confirmation of blood flow in parent, branching, and perforating vessels as well as assessment of remnant aneurysm parts after clip application. A retrospective analysis and review of the literature were conducted to determine the current essential advantages of ICG-VA in aneurysm surgery. Methods The authors retrospectively evaluated all aneurysm cases treated with the aid of intraoperative ICG-VA at a single institution between 2007 and 2013. They also analyzed the literature published since the initial description of ICG-VA in 2003. Results Two hundred forty-six procedures were performed in 232 patients harboring 295 aneurysms. The patients, whose mean age was 54 years, consisted of 159 women and 73 men. One hundred twenty-four surgeries were performed after subarachnoid hemorrhage, and 122 were performed for incidental aneurysms. Single aneurysms were clipped in 185 patients, and multiple aneurysms were clipped in 47 (mean aneurysm diameter 6.9 mm, range 2–40 mm). No complications associated with ICG-VA occurred. Intraoperative microvascular Doppler ultrasonography was performed before ICG-VA in all patients, and postoperative digital subtraction angiography (DSA) studies were available in 121 patients (52.2%) for retrospective comparative analysis. In 22 (9%) of 246 procedures, the clip position was modified intraoperatively as a consequence of ICG-VA. Stenosis of the parent vessels (16 procedures) or occlusion of the perforators (6 procedures), not detected by micro-Doppler ultrasonography, were the most common problems demonstrated on ICG-VA. In another 11 procedures (4.5%), residual perfusion of the aneurysm was observed and one or more additional clips were applied. Vessel stenosis or a compromised perforating artery occurred independent of aneurysm location and was about equally common in middle cerebral artery and anterior communicating artery aneurysms. In 2 procedures (0.8%), aneurysm puncture revealed residual blood flow within the lesion, which had not been detected by the ICG-VA. In the postoperative DSA studies, unexpected small (< 2 mm) aneurysm neck remnants, which had not been detected on intraoperative ICG-VA, were found in 11 (9.1%) of 121 patients. However, these remnants remained without consequence except in 1 patient with a 6-mm residual aneurysm dome, which was subsequently embolized with coils. Conclusions In a large cohort of consecutive patients, ICG-VA proved to be a helpful intraoperative tool and led to a significant intraoperative clip modification rate of 15%. However, small, < 2-mm-wide neck remnants and a 6-mm residual aneurysm were missed by intraoperative ICG-VA in up to 10% of patients. Results in this study confirm that DSA is indispensable for postoperative quality assessment in complex aneurysm surgery.


Sign in / Sign up

Export Citation Format

Share Document