A Possible Mechanism of Insulin Resistance in the Rat Adipose Cell with High-Fat/Low-Carbohydrate Feeding: Depletion of Intracellular Glucose Transport Systems

Diabetes ◽  
1982 ◽  
Vol 31 (7) ◽  
pp. 589-592 ◽  
Author(s):  
P. J. Hissin ◽  
E. Karnieli ◽  
I. A. Simpson ◽  
L. B. Salans ◽  
S. W. Cushman
Diabetes ◽  
1997 ◽  
Vol 46 (11) ◽  
pp. 1761-1767 ◽  
Author(s):  
D. H. Han ◽  
P. A. Hansen ◽  
H. H. Host ◽  
J. O. Holloszy

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Ellen Jackson ◽  
Elizabeth Rendina-Ruedy ◽  
Matt Priest ◽  
Brenda Smith ◽  
Veronique Lacombe

Diabetes mellitus is an epidemic disease characterized by alterations in glucose transport, which is tightly regulated by a family of specialized proteins called the glucose transporters (GLUTs). Although diabetic cardiomyopathy is a common complication in diabetic patients, its pathogenesis is still not well understood. Toll-like receptor (TLR) 4, which plays a central role in pathogen recognition by the innate immune system, may also play a critical role in linking inflammation and metabolic disease. We hypothesized that TLR4 activation triggers cardiac insulin resistance. We used mice with a loss-of function mutation in TLR4 (C3H/HeJ) and age-matched wild-type (WT, C57BL/6N) mice (n=8/group) to investigate how feeding a high-fat diet (HFD, 60% kcal from fat) for 16 weeks affected whole-body and cardiac glucose metabolism. After 16 weeks, WT mice fed a HFD were obese and developed hyperglycemia and insulin resistance compared to WT mice on a control diet (10% kcal from fat). The C3H/HeJ mice were partially protected against HFD-induced obesity and insulin resistance. In the heart, WT mice fed a HFD had a 30% decrease (P<0.05) in GLUT4 protein content as measured by Western Blot of cardiac crude membrane protein extracts. In contrast, the loss-of-function point mutation in TLR4 partially rescued cardiac GLUT4 content in the face of a HFD. Interestingly, there was a 40% increase (P<0.05) in the novel GLUT isoform, GLUT8, in the heart when mice of either genotype were fed a HFD. Additionally, GLUT4 protein content was negatively (P<0.05) correlated with GLUT8 content in the myocardium, suggesting that GLUT8 may act as a compensatory mechanism in the face of HFD-induced GLUT4 downregulation. Phosphorylated Akt, a key protein of the insulin signaling pathway, was positively (P<0.05) correlated with GLUT4 content, while the basal/inactive form was negatively correlated. In conclusion, these data suggest that activation of TLR4 activation during diabetes and obesity alters glucose transport by an Akt mechanism, and as such is a pathogenic factor during peripheral and cardiac insulin resistance. Overall, TLR4 appears to be a key modulator in the cross-talk between inflammatory and metabolic pathways, as well as a potential therapeutic target for diabetes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tilakavati Karupaiah ◽  
Khun-Aik Chuah ◽  
Karuthan Chinna ◽  
Peter Pressman ◽  
Roger A. Clemens ◽  
...  

Abstract We conducted this cross-sectional population study with a healthy multi-ethnic urban population (n = 577) in Malaysia, combining nutritional assessments with cardiometabolic biomarkers defined by lipid, atherogenic lipoproteins, inflammation and insulin resistance. We found diametrically opposing associations of carbohydrate (246·6 ± 57·7 g, 54·3 ± 6·5%-TEI) and fat (total = 64·5 ± 19·8 g, 31·6 ± 5·5%-TEI; saturated fat = 14·1 ± 2·7%-TEI) intakes as regards waist circumference, HDL-C, blood pressure, glucose, insulin and HOMA2-IR as well as the large-LDL and large-HDL lipoprotein particles. Diets were then differentiated into either low fat (LF, <30% TEI or <50 g) or high fat (HF, >35% TEI or >70 g) and low carbohydrate (LC, <210 g) or high carbohydrate (HC, >285 g) which yielded LFLC, LFHC, HFLC and HFHC groupings. Cardiometabolic biomarkers were not significantly different (P > 0.05) between LFLC and HFLC groups. LFLC had significantly higher large-LDL particle concentrations compared to HFHC. HOMA-IR2 was significantly higher with HFHC (1·91 ± 1·85, P < 0·001) versus other fat-carbohydrate combinations (LFLC = 1·34 ± 1·07, HFLC = 1·41 ± 1·07; LFHC = 1·31 ± 0·93). After co-variate adjustment, odds of having HOMA2-IR >1.7 in the HFHC group was 2.43 (95% CI: 1·03, 5·72) times more compared to LFLC while odds of having large-LDL <450 nmol/L in the HFHC group was 1.91 (95% CI: 1·06, 3·44) more compared to latter group. Our data suggests that a HFHC dietary combination in Malaysian adults is associated with significant impact on lipoprotein particles and insulin resistance.


Diabetes ◽  
1997 ◽  
Vol 46 (11) ◽  
pp. 1761-1767 ◽  
Author(s):  
D.-H. Han ◽  
P. A. Hansen ◽  
H. H. Host ◽  
J. O. Holloszy

2008 ◽  
Vol 294 (6) ◽  
pp. R1813-R1821 ◽  
Author(s):  
Erik J. Henriksen ◽  
Mary K. Teachey ◽  
Katherine A. Lindborg ◽  
Cody J. Diehl ◽  
Alan N. Beneze

High-fat feeding (HFF) is a well-accepted model for nutritionally-induced insulin resistance. The purpose of this investigation was to assess the metabolic responses of female lean Zucker rats provided regular chow (4% fat) or a high-fat chow (50% fat) for 15 wk. HFF rats spontaneously adjusted food intake so that daily caloric intake matched that of chow-fed (CF) controls. HFF animals consumed more ( P < 0.05) calories from fat (31.9 ± 1.2 vs. 2.4 ± 0.2 kcal/day) and had significantly greater final body weights (280 ± 10 vs. 250 ± 5 g) and total visceral fat (24 ± 3 vs. 10 ± 1 g). Fasting plasma insulin was 2.3-fold elevated in HFF rats. Glucose tolerance (58%) and whole body insulin sensitivity (75%) were markedly impaired in HFF animals. In HFF plantaris muscle, in vivo insulin receptor β-subunit (IR-β) and insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation and phosphorylation of Akt Ser473 and glycogen synthase kinase-3β (GSK-3β) Ser9, relative to circulating insulin levels, were decreased by 40–59%. In vitro insulin-stimulated glucose transport in HFF soleus was decreased by 54%, as were IRS-1 tyrosine phosphorylation (26%) and phosphorylation of Akt Ser473 (38%) and GSK-3β Ser9 (25%), the latter indicative of GSK-3 overactivity. GSK-3 inhibition in HFF soleus using CT98014 increased insulin-stimulated glucose transport (28%), IRS-1 tyrosine phosphorylation (28%) and phosphorylation of Akt Ser473 (38%) and GSK-3β Ser9 (48%). In summary, the female lean Zucker rat fed a high-fat diet represents an isocaloric model of nutritionally-induced insulin resistance associated with moderate visceral fat gain, hyperinsulinemia, and impairments of skeletal muscle insulin-signaling functionality, including GSK-3β overactivity.


2013 ◽  
Vol 304 (12) ◽  
pp. H1733-H1742 ◽  
Author(s):  
John D. Bosse ◽  
Han Yi Lin ◽  
Crystal Sloan ◽  
Quan-Jiang Zhang ◽  
E. Dale Abel ◽  
...  

Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-HF had lower ( P < 0.05) mean arterial pressure than SHR-C (148 ± 3 vs. 159 ± 3 mmHg) but a similar degree of cardiac hypertrophy (33.4 ± 0.4 vs. 33.1 ± 0.4 heart weight/tibia length, mg/mm). Mesenteric arteries and the entire aorta were used to assess vascular function and endothelial nitric oxide synthase (eNOS) signaling, respectively. Endothelium-dependent (acetylcholine) relaxation of mesenteric arteries was improved ( P < 0.05) in SHR-HF vs. SHR-C, whereas contraction (potassium chloride, phenylephrine) was reduced ( P < 0.05). Phosphorylation of eNOSSer1177 increased ( P < 0.05) in arteries from SHR-HF vs. SHR-C. Plasma glucose, insulin, and homoeostatic model of insulin assessment were lower ( P < 0.05) in SHR-HF vs. SHR-C, whereas peripheral insulin sensitivity (insulin tolerance test) was similar. After a 10-h fast, insulin stimulation (2 U/kg ip) increased ( P < 0.05) phosphorylation of AktSer473 and S6 in heart and gastrocnemius similarly in SHR-C vs. SHR-HF. In conclusion, a low-carbohydrate/high-fat diet reduced blood pressure and improved arterial function in SHR without producing signs of insulin resistance or altering insulin-mediated signaling in the heart, skeletal muscle, or vasculature.


2009 ◽  
Vol 296 (2) ◽  
pp. R243-R251 ◽  
Author(s):  
Kerry L. Mullen ◽  
Janet Pritchard ◽  
Ian Ritchie ◽  
Laelie A. Snook ◽  
Adrian Chabowski ◽  
...  

High-fat (HF) diets can induce insulin resistance (IR) by altering skeletal muscle lipid metabolism. An imbalance between fatty acid (FA) uptake and oxidation results in intramuscular lipid accumulation, which can impair the insulin-signaling cascade. Adiponectin (Ad) is an insulin-sensitizing adipokine known to stimulate skeletal muscle FA oxidation and reduce lipid accumulation. Evidence of Ad resistance has been shown in obesity and following chronic HF feeding and may contribute to lipid accumulation observed in these conditions. Whether Ad resistance precedes and is associated with the development of IR is unknown. We conducted a time course HF feeding trial for 3 days, 2 wk, or 4 wk to determine the onset of Ad resistance and identify the ensuing changes in lipid metabolism and insulin signaling leading to IR in skeletal muscle. Ad stimulated FA oxidation (+28%, P ≤ 0.05) and acetyl-CoA carboxylase phosphorylation (+34%, P ≤ 0.05) in control animals but failed to do so in any HF-fed group (i.e., as early as 3 days). By 2 wk, plasma membrane FA transporters and intramuscular diacylglycerol (DAG) and ceramide were increased, and insulin-stimulated phosphorylation of both protein kinase B and protein kinase B substrate 160 was blunted compared with control animals. After 4 wk of HF feeding, maximal insulin-stimulated glucose transport was impaired compared with control. Taken together, our results demonstrate that an early loss of Ad's stimulatory effect on FA oxidation precedes an increase in plasmalemmal FA transporters and the accumulation of intramuscular DAG and ceramide, blunted insulin signaling, and ultimately impaired maximal insulin-stimulated glucose transport in skeletal muscle induced by HF diets.


Sign in / Sign up

Export Citation Format

Share Document